Wavelet Characterizations of Variable Anisotropic Hardy Spaces

被引:1
|
作者
He, Yao [1 ]
Jiao, Yong [1 ]
Liu, Jun [2 ]
机构
[1] Cent South Univ, Sch Math & Stat, Changsha 410075, Peoples R China
[2] China Univ Min & Technol, Sch Math, JCAM, Xuzhou 221116, Peoples R China
基金
中国国家自然科学基金;
关键词
Variable exponent; Hardy space; expansive matrix; wavelet; atom; LEBESGUE SPACES; LORENTZ SPACES; EXPONENT; BOUNDEDNESS; DECOMPOSITIONS; REGULARITY;
D O I
10.1007/s10114-025-3567-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let p(<middle dot>): & Ropf;n -> (0, infinity] be a variable exponent function satisfying the globally log-H & ouml;lder continuous condition and A a general expansive matrix on & Ropf;n. Let HAp(<middle dot>)(& Ropf;n) be the variable anisotropic Hardy space associated with A. In this paper, via first establishing a criterion for affirming some functions being in the space HAp(<middle dot>)(& Ropf;n), the authors obtain several equivalent characterizations of HAp(<middle dot>)(& Ropf;n) in terms of the so-called tight frame multiwavelets, which extend the well-known wavelet characterizations of classical Hardy spaces. In particular, these wavelet characterizations are shown without the help of Peetre maximal operators.
引用
收藏
页码:304 / 326
页数:23
相关论文
共 50 条
  • [1] Wavelet Characterizations of Variable Anisotropic Hardy Spaces
    Yao He
    Yong Jiao
    Jun Liu
    Acta Mathematica Sinica,English Series, 2025, (01) : 304 - 326
  • [2] WAVELET CHARACTERIZATIONS OF VARIABLE HARDY-LORENTZ SPACES
    He, Yao
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2024, 61 (02) : 489 - 509
  • [3] DUAL SPACES AND WAVELET CHARACTERIZATIONS OF ANISOTROPIC MUSIELAK-ORLICZ HARDY SPACES
    Liu, Jun
    Haroske, Dorothee D.
    Yang, Dachun
    Yuan, Wen
    APPLIED AND COMPUTATIONAL MATHEMATICS, 2020, 19 (01) : 106 - 131
  • [4] Intrinsic square function and wavelet characterizations of variable Hardy-Lorentz spaces
    Liu, Jun
    Lu, Yaqian
    BULLETIN DES SCIENCES MATHEMATIQUES, 2024, 197
  • [5] Wavelet characterizations for anisotropic Besov spaces
    Hochmuth, R
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2002, 12 (02) : 179 - 208
  • [6] Variable Anisotropic Hardy Spaces with Variable Exponents
    Yang, Zhenzhen
    Yang, Yajuan
    Sun, Jiawei
    Li, Baode
    ANALYSIS AND GEOMETRY IN METRIC SPACES, 2021, 9 (01): : 65 - 89
  • [7] Littlewood–Paley and Finite Atomic Characterizations of Anisotropic Variable Hardy–Lorentz Spaces and Their Applications
    Jun Liu
    Ferenc Weisz
    Dachun Yang
    Wen Yuan
    Journal of Fourier Analysis and Applications, 2019, 25 : 874 - 922
  • [8] Real-variable characterizations of anisotropic product Musielak-Orlicz Hardy spaces
    Fan XingYa
    He JianXun
    Li BaoDe
    Yang DaChun
    SCIENCE CHINA-MATHEMATICS, 2017, 60 (11) : 2093 - 2154
  • [9] REAL-VARIABLE CHARACTERIZATIONS OF NEW ANISOTROPIC MIXED-NORM HARDY SPACES
    Huang, Long
    Liu, Jun
    Yang, Dachun
    Yuan, Wen
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2020, 19 (06) : 3033 - 3082
  • [10] Real-variable characterizations of anisotropic product Musielak-Orlicz Hardy spaces
    FAN XingYa
    HE JianXun
    LI BaoDe
    YANG DaChun
    Science China(Mathematics), 2017, 60 (11) : 2093 - 2154