A basic system of paraconsistent Nelsonian logic of conditionals

被引:0
|
作者
Olkhovikov, Grigory K. [1 ]
机构
[1] Ruhr Univ Bochum, Dept Philosophy I, Univ Str 150, D-44780 Bochum, Germany
基金
欧洲研究理事会; 欧盟地平线“2020”;
关键词
Conditional logic; Strong negation; Paraconsistent logic; Strong completeness; Modal logic; Constructive logic;
D O I
10.1007/s10849-024-09421-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We define a Kripke semantics for a conditional logic based on the propositional logic N4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf{N4}$$\end{document}, the paraconsistent variant of Nelson's logic of strong negation; we axiomatize the minimal system induced by this semantics. The resulting logic, which we call N4CK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf{N4CK}$$\end{document}, shows strong connections both with the basic intuitionistic logic of conditionals IntCK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf{IntCK}$$\end{document} introduced earlier in (Olkhovikov, 2023) and with the N4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf{N4}$$\end{document}-based modal logic FSKd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf{FSK}<^>d$$\end{document} introduced in (Odintsov and Wansing, 2004) as one of the possible counterparts to the classical modal system K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf{K}$$\end{document}. We map these connections by looking into the embeddings which obtain between the aforementioned systems.
引用
收藏
页码:299 / 337
页数:39
相关论文
共 50 条
  • [1] First-order Nelsonian Paraconsistent Quantum Logic
    Kamide, Norihiro
    2019 IEEE 49TH INTERNATIONAL SYMPOSIUM ON MULTIPLE-VALUED LOGIC (ISMVL), 2019, : 176 - 181
  • [2] Some properties of first-order Nelsonian paraconsistent quantum logic
    Kamide, Norihiro
    Journal of Applied Logics, 2020, 7 (01): : 59 - 88
  • [3] SOME PROPERTIES OF FIRST-ORDER NELSONIAN PARACONSISTENT QUANTUM LOGIC
    Kamide, Norihiro
    JOURNAL OF APPLIED LOGICS-IFCOLOG JOURNAL OF LOGICS AND THEIR APPLICATIONS, 2020, 7 (01): : 59 - 88
  • [4] AN INFINIVALENT PARACONSISTENT SYSTEM OF DEONTIC LOGIC
    PENA, L
    JOURNAL OF SYMBOLIC LOGIC, 1987, 52 (01) : 335 - 336
  • [5] BASIC LOGIC PARACONSISTENT AND PARACOMPLETE WITHOUT CLASSIFICATION AND SOME OF THEIR EXTENSIONS
    Manuel Sierra, A.
    BOLETIN DE MATEMATICAS, 2005, 12 (01): : 29 - 43
  • [6] Paraconsistent Logic
    David Ripley
    Journal of Philosophical Logic, 2015, 44 : 771 - 780
  • [7] Paraconsistent Logic
    Ripley, David
    JOURNAL OF PHILOSOPHICAL LOGIC, 2015, 44 (06) : 771 - 780
  • [8] PARACONSISTENT LOGIC
    ALVES, EH
    JOURNAL OF SYMBOLIC LOGIC, 1978, 43 (02) : 358 - 358
  • [9] Application of paraconsistent logic in an intelligent tutoring system
    Encheva, Sylvia
    Tumin, Sharil
    Solesvik, Maryna Z.
    COOPERATIVE DESIGN, VISUALIZATION, AND ENGINEERING, 2007, 4674 : 377 - +
  • [10] Logic and aggregation (Paraconsistent logic)
    Brown, B
    Schotch, P
    JOURNAL OF PHILOSOPHICAL LOGIC, 1999, 28 (03) : 265 - 287