The Bishop-Phelps-Bollobás property for operators defined on c0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_0$$\end{document}-sum of Euclidean spaces

被引:0
|
作者
T. Grando [1 ]
M. L. Lourenço [2 ]
机构
[1] Midwestern Paraná State University,Department of Mathematics
[2] University of São Paulo,Department of Mathematics
关键词
Banach space; Bishop–Phelps–Bollobás theorem; norm attaining operator; primary 46B04; secondary 46B07; 46B20;
D O I
10.1007/s10476-025-00070-z
中图分类号
学科分类号
摘要
The main purpose of this paper is to study the Bishop-Phelps-Bollobás property for operators on c0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_0$$\end{document}-sum of Euclidean spaces. We show that the pair (c0(⨁k=1∞ℓ2k),Y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ (c_0(\bigoplus^{\infty}_{k=1}\ell^{k}_{2} ),Y)$$\end{document} has the Bishop-Phelps-Bollobás property for operators (shortly BPBp for operators) whenever Y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y$$\end{document} is a uniformly convex Banach space.
引用
收藏
页码:211 / 224
页数:13
相关论文
共 50 条