Automatic detection, classification, and segmentation of sagittal MR images for diagnosing prolapsed lumbar intervertebral disc

被引:0
|
作者
Abu Sayed, Md. [1 ]
Rahman, G. M. Mahmudur [1 ]
Islam, Md. Sherajul [1 ]
Islam, Md. Alimul [1 ]
Park, Jeongwon [2 ,3 ]
Ahmed, Hasan [1 ]
Hossain, Akram [1 ]
Shahrior, Rahat [1 ]
机构
[1] Khulna Univ Engn & Technol, Khulna 9203, Bangladesh
[2] Univ Nevada, Dept Elect & Biomed Engn, Reno, NV 89557 USA
[3] Univ Ottawa, Sch Elect Engn & Comp Sci, Ottawa, ON K1N 6N5, Canada
来源
SCIENTIFIC REPORTS | 2025年 / 15卷 / 01期
关键词
Magnetic resonance imaging; Prolapsed lumbar intervertebral disc; YOLOv8; Weighted average ensemble; ROI;
D O I
10.1038/s41598-024-84301-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Magnetic resonance (MR) images are commonly used to diagnose prolapsed lumbar intervertebral disc (PLID). However, for a computer-aided diagnostic (CAD) system, distinguishing between pathological abnormalities of PLID in MR images is a challenging and intricate task. Here, we propose a comprehensive model for the automatic detection and cropping of regions of interest (ROI) from sagittal MR images using the YOLOv8 framework to solve this challenge. We also propose weighted average ensemble (WAE) classification and segmentation models for the classification and the segmentation, respectively. YOLOv8 has good detection accuracy for both the lumbar region (mAP50 = 99.50%) and the vertebral disc (mAP50 = 99.40%). The use of ROI approaches enhances the accuracy of individual models. Specifically, the classification accuracy of the WAE classification model reaches 97.64%, while the segmentation model achieves a Dice value of 95.72%. This automatic technique would improve the diagnostic process by offering enhanced accuracy and efficiency in the assessment of PLID.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Efficient segmentation of lumbar intervertebral disc from MR images
    Silvoster, Leena M.
    Kumar, Retnaswami Mathusoothana S.
    IET IMAGE PROCESSING, 2020, 14 (13) : 3076 - 3083
  • [2] Classification of Intervertebral Disc on Lumbar MR Images using SVM
    Beulah, A.
    Sharmila, T. Sree
    PROCEEDINGS OF THE 2016 2ND INTERNATIONAL CONFERENCE ON APPLIED AND THEORETICAL COMPUTING AND COMMUNICATION TECHNOLOGY (ICATCCT), 2016, : 293 - 297
  • [3] Microendoscopic discectomy for prolapsed lumbar intervertebral disc
    Ranjan, Alok
    Lath, Rahul
    NEUROLOGY INDIA, 2006, 54 (02) : 190 - 194
  • [4] Treatment of a prolapsed lumbar intervertebral disc in a ferret
    Lu, D
    Lamb, CR
    Patterson-Kane, JC
    Cappello, R
    JOURNAL OF SMALL ANIMAL PRACTICE, 2004, 45 (10) : 501 - 503
  • [5] Tuina therapy for prolapsed lumbar intervertebral disc
    Zhang Bi-meng
    Wu Huan-gan
    Shen Jian
    Journal of Acupuncture and Tuina Science, 2004, 2 (2) : 58 - 60
  • [6] Multidomain Feature Level Fusion for Classification of Lumbar Intervertebral Disc Using Spine MR Images
    Shinde, J. V.
    Joshi, Y. V.
    Manthalkar, R. R.
    IETE JOURNAL OF RESEARCH, 2022, 68 (06) : 4346 - 4359
  • [7] Evaluation of spinopelvic parameters in lumbar prolapsed intervertebral disc
    Poonia, Apoorva
    Lodha, Sambhav
    Sharma, N. C.
    INDIAN JOURNAL OF RADIOLOGY AND IMAGING, 2020, 30 (03): : 253 - 262
  • [8] EM Algorithm based Intervertebral Disc Segmentation on MR Images
    Beulah, A.
    Sharmila, Sree T.
    2017 INTERNATIONAL CONFERENCE ON COMPUTER, COMMUNICATION AND SIGNAL PROCESSING (ICCCSP), 2017, : 259 - 264
  • [9] Segmentation of Lumbar Intervertebral Discs from Spine MR Images
    Bazila
    Mir, A. H.
    2014 INNOVATIVE APPLICATIONS OF COMPUTATIONAL INTELLIGENCE ON POWER, ENERGY AND CONTROLS WITH THEIR IMPACT ON HUMANITY (CIPECH), 2014, : 85 - 91
  • [10] Spinal epidural tuberculoma simulating prolapsed intervertebral lumbar disc
    Singh, P
    Batish, VK
    Sarup, S
    Reddy, PS
    NEUROLOGY INDIA, 1998, 46 (02) : 152 - 155