Volumes of components of Lelong upper level sets IIVolumes of components of Lelong upper level sets IIS. Su, D.-V. Vu

被引:0
|
作者
Shuang Su [1 ]
Duc-Viet Vu [1 ]
机构
[1] University of Cologne,Division of Mathematics, Department of Mathematics and Computer Science
关键词
32U15; 32Q15;
D O I
10.1007/s00208-024-03079-1
中图分类号
学科分类号
摘要
Let X be a compact Kähler manifold of dimension n, and let T be a closed positive (1, 1)-current in a nef cohomology class on X. We establish an optimal upper bound for the volume of components of Lelong upper level sets of T in terms of cohomology classes of non-pluripolar self-products of T.
引用
收藏
页码:6451 / 6465
页数:14
相关论文
共 12 条
  • [1] Volumes of components of Lelong upper level sets II
    Su, Shuang
    Vu, Duc-Viet
    MATHEMATISCHE ANNALEN, 2025,
  • [2] Volume of Components of Lelong Upper-Level Sets
    Do, Duc Thai
    Vu, Duc-Viet
    JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (09)
  • [3] Volume of Components of Lelong Upper-Level Sets
    Duc Thai Do
    Duc-Viet Vu
    The Journal of Geometric Analysis, 2023, 33
  • [4] Upper Level Sets of Lelong Numbers on Hirzebruch Surfaces
    Kisisel, Ali Ulas Oezguer
    Yazici, Ozcan
    JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (08)
  • [5] Upper Level Sets of Lelong Numbers on Hirzebruch Surfaces
    Ali Ulaş Özgür Kişisel
    Ozcan Yazici
    The Journal of Geometric Analysis, 2023, 33
  • [6] Geometric properties of upper level sets of Lelong numbers on projective spaces
    Dan Coman
    Tuyen Trung Truong
    Mathematische Annalen, 2015, 361 : 981 - 994
  • [7] Geometric properties of upper level sets of Lelong numbers on projective spaces
    Coman, Dan
    Truong, Tuyen Trung
    MATHEMATISCHE ANNALEN, 2015, 361 (3-4) : 981 - 994
  • [8] A Property of upper level sets of Lelong numbers of currents on P2
    Heffers, James J.
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2017, 28 (14)
  • [9] Upper level sets of Lelong numbers on P2 and cubic curves
    Kisisel, Ali Ulas Ozgur
    Yazici, Ozcan
    MATHEMATISCHE ZEITSCHRIFT, 2022, 300 (03) : 2917 - 2930
  • [10] Constructing the Tree of Shapes of an Image by Fusion of the Trees of Connected Components of Upper and Lower Level Sets
    Vicent Caselles
    Enric Meinhardt
    Pascal Monasse
    Positivity, 2008, 12 : 55 - 73