The Hawaii conjecture;
The Laguerre inequality;
Real-rooted polynomials;
Hyperbolic polynomials;
Rolle’s type theorems;
Chebyshev polynomials of the first kind;
Primary 26C10;
Secondary 30C15;
D O I:
10.1007/s11785-025-01664-z
中图分类号:
学科分类号:
摘要:
For a given real polynomial p we study the possible number of real roots of a differential polynomial Hϰ[p](x)=ϰp′(x)2-p(x)p′′(x),ϰ∈R\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$H_{\varkappa }[p](x) = \varkappa \left( p'(x)\right) ^2-p(x)p''(x), \varkappa \in \mathbb {R}$$\end{document}. In the special case when all real zeros of the polynomial p are simple, and all roots of its derivative p′\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$p'$$\end{document} are real and simple, the distribution of zeros of Hϰ[p]\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$H_{\varkappa }[p]$$\end{document} is completely described for each real ϰ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\varkappa $$\end{document}. We also provide counterexamples to two Boris Shapiro’s conjectures about the number of zeros of the function Hn-1n[p]\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$H_{\frac{n-1}{n}}[p]$$\end{document}.
机构:
Univ Massachusetts Boston, Dept Math, Boston, MA USAUniv Massachusetts Boston, Dept Math, Boston, MA USA
Katkova, Olga
Tyaglov, Mikhail
论文数: 0引用数: 0
h-index: 0
机构:
St Petersburg State Univ, Dept Math & Comp Sci, St Petersburg 199178, Russia
Shanghai Jiao Tong Univ, Sch Math Sci, MOE LSC, Shanghai, Peoples R ChinaUniv Massachusetts Boston, Dept Math, Boston, MA USA
Tyaglov, Mikhail
Vishnyakova, Anna
论文数: 0引用数: 0
h-index: 0
机构:
Holon Inst Technol, Dept Math, Holon, IsraelUniv Massachusetts Boston, Dept Math, Boston, MA USA