Some Generalizations of the Hawaii Conjecture and BeyondSome Generalizations of the Hawaii Conjecture and BeyondO. Katkova et al.

被引:0
|
作者
Olga Katkova [1 ]
Mikhail Tyaglov [2 ]
Anna Vishnyakova [3 ]
机构
[1] University of Massachusetts Boston,Department of Mathematics
[2] St. Petersburg State University,Department of Mathematics and Computer Sciences
[3] Shanghai Jiao Tong University,School of Mathematical Sciences and MOE
[4] Holon Institute of Technology,LSC
关键词
The Hawaii conjecture; The Laguerre inequality; Real-rooted polynomials; Hyperbolic polynomials; Rolle’s type theorems; Chebyshev polynomials of the first kind; Primary 26C10; Secondary 30C15;
D O I
10.1007/s11785-025-01664-z
中图分类号
学科分类号
摘要
For a given real polynomial p we study the possible number of real roots of a differential polynomial Hϰ[p](x)=ϰp′(x)2-p(x)p′′(x),ϰ∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\varkappa }[p](x) = \varkappa \left( p'(x)\right) ^2-p(x)p''(x), \varkappa \in \mathbb {R}$$\end{document}. In the special case when all real zeros of the polynomial p are simple, and all roots of its derivative p′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p'$$\end{document} are real and simple, the distribution of zeros of Hϰ[p]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\varkappa }[p]$$\end{document} is completely described for each real ϰ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varkappa $$\end{document}. We also provide counterexamples to two Boris Shapiro’s conjectures about the number of zeros of the function Hn-1n[p]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\frac{n-1}{n}}[p]$$\end{document}.
引用
收藏
相关论文
共 26 条