Non-symplectic involutions of normal K3 surfaces associated with Hirzebruch surfaces

被引:0
|
作者
Hayashi, Taro [1 ]
机构
[1] Ritsumeikan Univ, Coll Sci & Engn, Dept Math Sci, 1-1-1 Nojihigashi, Kusatsu, Shiga 5258577, Japan
关键词
Noraml K3 surface; Non-symplectic involution; Double cover; ELLIPTIC FIBRATIONS; LINEAR-SYSTEMS; DOUBLE COVER;
D O I
10.1007/s10711-024-00959-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a non-symplectic involution g of a K3 surface X , the fixed point set of g and the quotient space X/(g) are well studied. In this paper, we study a non-symplectic involution f of a normal K3 surface Y such that the smooth model of Y is a double cover K3 surface of a Hirzebruch surface and f is induced by its covering involution. We determine the fixed point set of f , the singular points of Y, and the quotient space Y/(f).
引用
收藏
页数:13
相关论文
共 50 条
  • [1] K3 surfaces with a pair of commuting non-symplectic involutions
    Reidegeld, Frank
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2022, 30 (09) : 2095 - 2122
  • [2] On symplectic and non-symplectic automorphisms of K3 surfaces
    Garbagnati, Alice
    Sarti, Alessandra
    REVISTA MATEMATICA IBEROAMERICANA, 2013, 29 (01) : 135 - 162
  • [3] The Non-symplectic Index of Supersingular K3 Surfaces
    Jang, Junmyeong
    TAIWANESE JOURNAL OF MATHEMATICS, 2019, 23 (06): : 1327 - 1338
  • [4] Degeneration of K3 surfaces with non-symplectic automorphisms
    Matsumoto, Yuya
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2023, 150 : 227 - 245
  • [5] Non-symplectic automorphisms of order 3 on K3 surfaces
    Artebani, Michela
    Sarti, Alessandra
    MATHEMATISCHE ANNALEN, 2008, 342 (04) : 903 - 921
  • [6] Non-symplectic automorphisms of order 3 on K3 surfaces
    Michela Artebani
    Alessandra Sarti
    Mathematische Annalen, 2008, 342
  • [7] Real K3 surfaces with non-symplectic involution and applications
    Nikulin, VV
    Saito, S
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2005, 90 : 591 - 654
  • [8] The modularity of K3 surfaces with non-symplectic group actions
    Livne, Ron
    Schuett, Matthias
    Yui, Noriko
    MATHEMATISCHE ANNALEN, 2010, 348 (02) : 333 - 355
  • [9] K3 surfaces with non-symplectic automorphisms of prime order
    Artebani, Michela
    Sarti, Alessandra
    Taki, Shingo
    MATHEMATISCHE ZEITSCHRIFT, 2011, 268 (1-2) : 507 - 533
  • [10] The modularity of K3 surfaces with non-symplectic group actions
    Ron Livné
    Matthias Schütt
    Noriko Yui
    Mathematische Annalen, 2010, 348 : 333 - 355