Reinforcement learning in cold atom experiments

被引:0
|
作者
Reinschmidt, Malte [1 ]
Fortagh, Jozsef [1 ]
Guenther, Andreas [1 ]
Volchkov, Valentin V. [2 ]
机构
[1] Eberhard Karls Univ Tubingen, Phys Inst, Ctr Quantum Sci, Tubingen, Germany
[2] Max Planck Inst Intelligent Syst, Tubingen, Germany
关键词
LEVEL; GO;
D O I
10.1038/s41467-024-52775-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cold atom traps are at the heart of many quantum applications in science and technology. The preparation and control of atomic clouds involves complex optimization processes, that could be supported and accelerated by machine learning. In this work, we introduce reinforcement learning to cold atom experiments and demonstrate a flexible and adaptive approach to control a magneto-optical trap. Instead of following a set of predetermined rules to accomplish a specific task, the objectives are defined by a reward function. This approach not only optimizes the cooling of atoms just as an experimentalist would do, but also enables new operational modes such as the preparation of pre-defined numbers of atoms in a cloud. The machine control is trained to be robust against external perturbations and able to react to situations not seen during the training. Finally, we show that the time consuming training can be performed in-silico using a generic simulation and demonstrate successful transfer to the real world experiment. The preparation and control of atomic clouds which are commonly used in scientific and technological applications is a complex process. Here, authors demonstrate reinforcement learning as a flexible and adaptive approach to control of a cold atoms trap, opening an avenue to robust experiments and applications.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Microgravity facilities for cold atom experiments
    Raudonis, Matthias
    Roura, Albert
    Meister, Matthias
    Lotz, Christoph
    Overmeyer, Ludger
    Herrmann, Sven
    Gierse, Andreas
    Laemmerzahl, Claus
    Bigelow, Nicholas P.
    Lachmann, Maike
    Piest, Baptist
    Gaaloul, Naceur
    Rasel, Ernst M.
    Schubert, Christian
    Herr, Waldemar
    Deppner, Christian
    Ahlers, Holger
    Ertmer, Wolfgang
    Williams, Jason R.
    Lundblad, Nathan
    Woerner, Lisa
    QUANTUM SCIENCE AND TECHNOLOGY, 2023, 8 (04)
  • [2] Fast machine-learning online optimization of ultra-cold-atom experiments
    Wigley, P. B.
    Everitt, P. J.
    van den Hengel, A.
    Bastian, J. W.
    Sooriyabandara, M. A.
    McDonald, G. D.
    Hardman, K. S.
    Quinlivan, C. D.
    Manju, P.
    Kuhn, C. C. N.
    Petersen, I. R.
    Luiten, A. N.
    Hope, J. J.
    Robins, N. P.
    Hush, M. R.
    SCIENTIFIC REPORTS, 2016, 6
  • [3] Fast machine-learning online optimization of ultra-cold-atom experiments
    P. B. Wigley
    P. J. Everitt
    A. van den Hengel
    J. W. Bastian
    M. A. Sooriyabandara
    G. D. McDonald
    K. S. Hardman
    C. D. Quinlivan
    P. Manju
    C. C. N. Kuhn
    I. R. Petersen
    A. N. Luiten
    J. J. Hope
    N. P. Robins
    M. R. Hush
    Scientific Reports, 6
  • [4] Review and experimental benchmarking of machine learning algorithms for efficient optimization of cold atom experiments
    Anton, Oliver
    Henderson, Victoria A.
    Da Ros, Elisa
    Sekulic, Ivan
    Burger, Sven
    Schneider, Philipp-Immanuel
    Krutzik, Markus
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2024, 5 (02):
  • [5] New optical technology for cold atom experiments
    Holleville, D
    Dimarcq, N
    Rigaud, F
    Saccoccio, M
    Berton, J
    Loesel, J
    Chappaz, C
    De Labachelerie, M
    Valentin, J
    Bonnefont, S
    Arguel, P
    Lozes, F
    Vermersch, FJ
    Krakowski, M
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON SPACE OPTICS (ICSO 2004), 2004, 554 : 525 - 528
  • [6] Structural abstraction experiments in reinforcement learning
    Fitch, R
    Hengst, B
    Suc, D
    Calbert, G
    Scholz, J
    AI 2005: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2005, 3809 : 164 - 175
  • [7] On-chip optical lattice for cold atom experiments
    Straatsma, Cameron J. E.
    Ivory, Megan K.
    Duggan, Janet
    Ramirez-Serrano, Jaime
    Anderson, Dana Z.
    Salim, Evan A.
    OPTICS LETTERS, 2015, 40 (14) : 3368 - 3371
  • [8] Cold atom-ion experiments in hybrid traps
    Haerter, A.
    Denschlag, J. Hecker
    CONTEMPORARY PHYSICS, 2014, 55 (01) : 33 - 45
  • [9] Cold atom source for experiments in cavity quantum electrodynamics
    Ng, J.
    Orozco, L.A.
    Conference on Quantum Electronics and Laser Science (QELS) - Technical Digest Series, 1996, 9
  • [10] Pathfinder experiments with atom interferometry in the Cold Atom Lab onboard the International Space Station
    Williams, Jason R.
    Sackett, Charles A.
    Ahlers, Holger
    Aveline, David C.
    Boegel, Patrick
    Botsi, Sofia
    Charron, Eric
    Elliott, Ethan R.
    Gaaloul, Naceur
    Giese, Enno
    Herr, Waldemar
    Kellogg, James R.
    Kohel, James M.
    Lay, Norman E.
    Meister, Matthias
    Mueller, Gabriel
    Mueller, Holger
    Oudrhiri, Kamal
    Phillips, Leah
    Pichery, Annie
    Rasel, Ernst M.
    Roura, Albert
    Sbroscia, Matteo
    Schleich, Wolfgang P.
    Schneider, Christian
    Schubert, Christian
    Sen, Bejoy
    Thompson, Robert J.
    Bigelow, Nicholas P.
    NATURE COMMUNICATIONS, 2024, 15 (01)