Network-based predictive models for artificial intelligence: an interpretable application of machine learning techniques in the assessment of depression in stroke patients

被引:0
|
作者
Wenwei Zuo [1 ]
Xuelian Yang [2 ]
机构
[1] University of Shanghai for Science and Technology,Department of Neurology
[2] Gongli Hospital of Shanghai Pudong New Area,undefined
关键词
Stroke; Depression; Machine learning; Interpretable; Predictive model;
D O I
10.1186/s12877-025-05837-5
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] Application of Artificial Intelligence and machine learning techniques for landslide susceptibility assessment
    Ospina-Gutierrez, Juan Pablo
    Aristizabal, Edier
    REVISTA MEXICANA DE CIENCIAS GEOLOGICAS, 2021, 38 (01): : 43 - 54
  • [2] Bull Breeding Soundness Assessment Using Artificial Neural Network-Based Predictive Models
    Marin-Urias, Luis F.
    Garcia-Ramirez, Pedro J.
    Dominguez-Mancera, Belisario
    Hernandez-Beltran, Antonio
    Vasquez-Santacruz, Jose A.
    Barrientos-Morales, Manuel
    Cervantes-Acosta, Patricia
    Portillo-Velez, Rogelio de J.
    AGRICULTURE-BASEL, 2024, 14 (01):
  • [3] Network physiology in insomnia patients: Assessment of relevant changes in network topology with interpretable machine learning models
    Jansen, Christoph
    Penzel, Thomas
    Hodel, Stephan
    Breuer, Stefanie
    Spott, Martin
    Krefting, Dagmar
    CHAOS, 2019, 29 (12)
  • [4] Artificial Intelligence Models, Tools, and Applications Using Machine Learning Techniques
    Yadav, Vikash
    RECENT ADVANCES IN ELECTRICAL & ELECTRONIC ENGINEERING, 2025, 18 (02) : 109 - 110
  • [5] Graph Convolutional Network-Based Interpretable Machine Learning Scheme in Smart Grids
    Luo, Yonghong
    Lu, Chao
    Zhu, Lipeng
    Song, Jie
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2023, 20 (01) : 47 - 58
  • [6] Artificial intelligence analysis of electroencephalogram and evoked potential in patients with depression based on machine learning
    Ma, Jianqi
    INTERNET TECHNOLOGY LETTERS, 2024, 7 (05)
  • [7] Evaluation of quantum-encoding for machine learning features in neural network-based predictive models
    Spielvogel, C.
    Grahovac, M.
    Krajnc, D.
    Hacker, M.
    Beyer, T.
    Haug, A. R.
    Papp, L.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2020, 47 (SUPPL 1) : S276 - S277
  • [8] Interpretable Machine Learning Models for Malicious Domains Detection Using Explainable Artificial Intelligence (XAI)
    Aslam, Nida
    Khan, Irfan Ullah
    Mirza, Samiha
    AlOwayed, Alanoud
    Anis, Fatima M.
    Aljuaid, Reef M.
    Baageel, Reham
    SUSTAINABILITY, 2022, 14 (12)
  • [9] Research progress and application prospect of interpretable machine learning in artificial intelligence of oil and gas industry
    Min, Chao
    Wen, Guoquan
    Li, Xiaogang
    Zhao, Dazhi
    Li, Kuncheng
    Natural Gas Industry, 2024, 44 (09) : 114 - 126
  • [10] Interpretable Prediction of a Decentralized Smart Grid Based on Machine Learning and Explainable Artificial Intelligence
    Cifci, Ahmet
    IEEE ACCESS, 2025, 13 : 36285 - 36305