Radiomics based on dual-energy CT virtual monoenergetic images to identify symptomatic carotid plaques: a multicenter study

被引:0
|
作者
Hu, Weiming [1 ,2 ]
Lin, Guihan [1 ]
Chen, Weiyue [1 ]
Wu, Jianhua [1 ,2 ]
Zhao, Ting [1 ,2 ]
Xu, Lei [3 ,4 ]
Qian, Xusheng [5 ]
Shen, Lin [1 ]
Yan, Zhihan [3 ,4 ]
Chen, Minjiang [1 ]
Xia, Shuiwei [1 ]
Lu, Chenying [1 ]
Yang, Jing [6 ]
Xu, Min [1 ]
Chen, Weiqian [1 ,2 ]
Ji, Jiansong [1 ]
机构
[1] Wenzhou Med Univ, Affiliated Hosp 1, Zhejiang Engn Res Ctr Intervent Med Engn & Biotech, Key Lab Precis Med Lishui City,Zhejiang Key Lab Im, Lishui 323000, Zhejiang, Peoples R China
[2] Wenzhou Med Univ, Affiliated Hosp 5, Dept Vasc Surg, Lishui 323000, Peoples R China
[3] Wenzhou Med Univ, Affiliated Hosp 2, Dept Radiol, Wenzhou 325000, Peoples R China
[4] Wenzhou Key Lab Struct & Funct Imaging, Wenzhou 325000, Peoples R China
[5] Chinese Acad Sci, Suzhou Inst Biomed Engn & Technol, Suzhou 215163, Peoples R China
[6] Huiying Med Technol Co Ltd, Room A206,B2,Dongsheng Sci & Technol Pk, Beijing 100192, Peoples R China
来源
SCIENTIFIC REPORTS | 2025年 / 15卷 / 01期
关键词
Dual-energy computed tomography; Symptomatic carotid plaque; Virtual monoenergetic images; Radiomics; ASSOCIATION; FEATURES;
D O I
10.1038/s41598-025-92855-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This study aims to create a radiomics nomogram using dual-energy computed tomography (DECT) virtual monoenergetic images (VMI) to accurately identify symptomatic carotid plaques. Between January 2018 and May 2023, data from 416 patients were collected from two centers for retrospective analysis. Center 1 provided data for the training (n = 213) and internal validation (n = 93) sets, and center 2 supplied the external validation set (n = 110). Plaques imaged at 40 keV, 70 keV, and 100 keV were outlined, and the selected radiomics features were used to establish the radiomics model. The classifier with the highest area under the curve (AUC) in the training set generated the radiomics score (Rad-Score). Logistic regression was used to identify risk factors and establish a clinical model. A radiomics nomogram integrating the Rad-score and clinical risk factors was constructed. The predictive performance was evaluated using receiver operating characteristic (ROC) analysis and decision curve analysis (DCA). Plaque ulceration and plaque burden are independent risk factors for symptomatic carotid plaques. The 40 + 70 keV radiomics model achieved excellent diagnostic performance, with an average AUC of 0.805 across all validation sets. Furthermore, the radiomics nomogram, integrating the Rad-score with clinical predictors, demonstrated robust diagnostic accuracy, with AUCs of 0.909, 0.850, and 0.804 in the training, internal validation, and external validation sets, respectively. DCA results suggested that the nomogram was clinically valuable. Our study developed and validated a DECT VMI-based radiomics nomogram for early identification of symptomatic carotid plaques, which can be used to assist clinical diagnosis and treatment decisions. The study introduces an innovative radiomics nomogram utilizing DECT VMI to discern symptomatic carotid plaques with high precision.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Virtual Monoenergetic Images of Dual-Energy CT-Impact on Repeatability, Reproducibility, and Classification in Radiomics
    Euler, Andre
    Laqua, Fabian Christopher
    Cester, Davide
    Lohaus, Niklas
    Sartoretti, Thomas
    dos Santos, Daniel Pinto
    Alkadhi, Hatem
    Baessler, Bettina
    CANCERS, 2021, 13 (18)
  • [2] Determination of the optimal range for virtual monoenergetic images in dual-energy CT based on physical quality parameters
    Fernandez-Velilla Cepria, Enric
    Angel Gonzalez-Ballester, Miguel
    Quera Jordana, Jaume
    Pera, Oscar
    Sanz Latiesas, Xavier
    Foro Arnalot, Palmira
    Membrive Conejo, Ismael
    Rodriguez de Dios, Nuria
    Reig Castillejo, Anna
    Algara Lopez, Manuel
    MEDICAL PHYSICS, 2021, 48 (09) : 5085 - 5095
  • [3] Proton stopping power prediction based on dual-energy CT-generated virtual monoenergetic images
    Nasmark, Torbjorn
    Andersson, Jonas
    MEDICAL PHYSICS, 2021, 48 (09) : 5232 - 5243
  • [4] Advanced virtual monoenergetic images: improving the contrast of dual-energy CT pulmonary angiography
    Meier, A.
    Wurnig, M.
    Desbiolles, L.
    Leschka, S.
    Frauenfelder, T.
    Alkadhi, H.
    CLINICAL RADIOLOGY, 2015, 70 (11) : 1244 - 1251
  • [5] Robustness of radiomics features of virtual unenhanced and virtual monoenergetic images in dual-energy CT among different imaging platforms and potential role of CT number variability
    Zhong, Jingyu
    Pan, Zilai
    Chen, Yong
    Wang, Lingyun
    Xia, Yihan
    Wang, Lan
    Li, Jianying
    Lu, Wei
    Shi, Xiaomeng
    Feng, Jianxing
    Yan, Fuhua
    Zhang, Huan
    Yao, Weiwu
    INSIGHTS INTO IMAGING, 2023, 14 (01)
  • [6] Robustness of radiomics features of virtual unenhanced and virtual monoenergetic images in dual-energy CT among different imaging platforms and potential role of CT number variability
    Jingyu Zhong
    Zilai Pan
    Yong Chen
    Lingyun Wang
    Yihan Xia
    Lan Wang
    Jianying Li
    Wei Lu
    Xiaomeng Shi
    Jianxing Feng
    Fuhua Yan
    Huan Zhang
    Weiwu Yao
    Insights into Imaging, 14
  • [7] Review of Clinical Applications for Virtual Monoenergetic Dual-Energy CT
    Albrecht, Moritz H.
    Vogl, Thomas J.
    Martin, Simon S.
    Nance, John W.
    Duguay, Taylor M.
    Wichmann, Julian L.
    De Cecco, Carlo N.
    Varga-Szemes, Akos
    van Assen, Marly
    Tesche, Christian
    Schoepf, U. Joseph
    RADIOLOGY, 2019, 293 (02) : 260 - 271
  • [8] Improved Detection of Endoleaks in Virtual Monoenergetic Images in Dual-Energy CT Angiography Following EVAR
    Kazimierczak, Wojciech
    Kazimierczak, Natalia
    Lemanowicz, Adam
    Nowak, Ewa
    Migdalski, Arkadiusz
    Jawien, Arkadiusz
    Jankowski, Tomasz
    Serafin, Zbigniew
    ACADEMIC RADIOLOGY, 2023, 30 (12) : 2813 - 2824
  • [9] Virtual monoenergetic dual-layer dual-energy CT images in colorectal cancer: CT diagnosis could be improved?
    Francesco Marcello Arico’
    Renato Trimarchi
    Antonio Portaluri
    Claudia Barilla’
    Nicola Migliaccio
    Giuseppe Mauro Bucolo
    Giuseppe Cicero
    Carmelo Sofia
    Christian Booz
    Thomas J. Vogl
    Maria Adele Marino
    Velio Ascenti
    Tommaso D’Angelo
    Silvio Mazziotti
    Giorgio Ascenti
    La radiologia medica, 2023, 128 : 891 - 899
  • [10] Evaluation of Dual-Energy CT Reconstructed Virtual Monoenergetic Images for Radiation Therapy Treatment Planning
    Broekhoven, B.
    Godwin, W.
    McDonald, D.
    MEDICAL PHYSICS, 2020, 47 (06) : E534 - E534