Exploring the potential mechanism of Radix Bupleuri in the treatment of sepsis: a study based on network pharmacology and molecular docking

被引:0
|
作者
Wang, Hao [1 ]
Xiong, Wei [2 ]
Laram, Yongchu [1 ]
Hu, Li [2 ]
Zhong, Wu [2 ]
Hu, Yingchun [2 ]
机构
[1] Southwest Med Univ, Clin Med Coll, Luzhou, Peoples R China
[2] Southwest Med Univ, Affiliated Hosp, Dept Emergency Med, Luzhou, Peoples R China
关键词
Radix Bupleuri; Network pharmacology; RNA-seq; Molecular docking; Sepsis;
D O I
10.1186/s12906-024-04637-5
中图分类号
R [医药、卫生];
学科分类号
10 ;
摘要
Aim To explore, using network pharmacology and RNA-seq technologies, potential active targets and mechanisms underpinning Radix Bupleuri's effectiveness during sepsis treatment. Methods Following the Sepsis-3.0 criteria, the research cohort, comprising 23 sepsis patients and 10 healthy participants, was obtained from public databases. Peripheral blood samples were collected and subjected to RNA-seq analysis. Active ingredients and potential targets of Radix Bupleuri were identified using the Bioinformatics Analysis Tool for Molecular mechANism of Traditional Chinese Medicine 2.0 (BATMAN-TCM 2.0) database and TCMSP database. Subsequently, protein-protein interaction (PPI) network construction, Gene Ontology (GO) analysis, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were conducted to explore cross-targets between disease and drugs. Survival analysis of key targets was performed using the GSE65682 dataset, and single-cell RNA-seq was employed for cellular localization analysis of key genes. Finally, molecular docking and Molecular dynamics simulation of the core target was conducted. Results Differential expression analysis revealed 4253 genes associated with sepsis. Seventy-six active components and 1030 potential targets of Radix Bupleuri were identified. PPI, GO, and pathway enrichment analyses indicated involvement in the regulation of transmembrane transport, monatomic ion transport, and MAPK signaling. Survival curve analysis identified PIK3CD, ARRB2, SUCLG1, and SPI1 as key targets associated with lower mortality in the high expression group, while higher mortality was observed in the high PNP and FURIN expression groups. Single-cell RNA sequencing unveiled the cellular localization of PIK3CD, PNP, SPI1, and FURIN within macrophages, while ARRB2 and SUCLG1 exhibited localization in both macrophages and T-cells. Subsequent molecular docking and Molecular dynamics simulation indicated a potential binding interaction for Carvone-PIK3CD, Encecalin-ARRB2, Lauric Acid-SUCLG1, Pulegone-FURIN, Nootkatone-SPI1, and Saikogenin F-PNP. Conclusion Radix Bupleuri could modulate immune function by affecting PIK3CD, ARRB2, SUCLG1, FURIN, SPI1, and PNP, thereby potentially improving the prognosis of sepsis.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Network-based pharmacology and molecular docking exploring the "Bupleuri Radix-Scutellariae Radix" mechanism of action in the viral hepatitis B treatment
    Long, Piao
    Xia, Yu
    Yang, Yuying
    Cao, Jianzhong
    MEDICINE, 2022, 101 (48) : E31835
  • [2] Mechanism of Astragali Radix for the treatment of osteoarthritis: A study based on network pharmacology and molecular docking
    Shao, Yiming
    He, Jiao
    Zhang, Xinan
    Xie, Panpan
    Lian, Hongkai
    Zhang, Meng
    MEDICINE, 2022, 101 (28)
  • [3] Mechanism of Radix Scutellariae in the treatment of influenza A based on network pharmacology and molecular docking
    Li, Qing
    Liu, Yuntao
    Yang, Min
    Jin, Lianshun
    Wu, Yali
    Tang, Lijuan
    He, Liuyun
    Wu, Dinghong
    Zhang, Zhongde
    ANNALS OF TRANSLATIONAL MEDICINE, 2022, 10 (06)
  • [4] Exploring the mechanism of Radix Bupleuri in the treatment of depression combined with SARS-CoV-2 infection through bioinformatics, network pharmacology, molecular docking, and molecular dynamic simulation
    Chen, Zexing
    Wang, Xinhua
    Huang, Wanyi
    METABOLIC BRAIN DISEASE, 2025, 40 (01)
  • [5] Network pharmacology and molecular docking technology for exploring the effect and mechanism of Radix Bupleuri and Radix Paeoniae Alba herb-pair on anti-hepatitis: A review
    Huang, Long
    Yu, Qingsheng
    Peng, Hui
    Zhen, Zhou
    MEDICINE, 2023, 102 (48) : E35443
  • [6] Exploring the mechanism of avenanthramide in the treatment of atherosclerosis based on network pharmacology and molecular docking: An observational study
    Wang, Zhigang
    Fang, Longzhi
    Han, Meng
    Liu, Kangzhe
    Zheng, Yuanmei
    Zhan, Yibei
    MEDICINE, 2024, 103 (51)
  • [7] Network pharmacology and molecular docking-based study on exploring the potential mechanism of Lycium barbarum L: In the treatment of atherosclerosis
    Qin, Xinchen
    Xie, Zikai
    Chen, Xi
    Wang, Xiaoxuan
    Ma, Lijuan
    MEDICINE, 2023, 102 (44) : E35734
  • [8] Exploring the potential molecular mechanism of Gualou Guizhi decoction in the treatment of rheumatoid arthritis based on network pharmacology and molecular docking
    Duan, Zhihao
    Jin, Can
    Ma, Shuai
    Liu, Jinlang
    Li, Shigang
    Zhou, You
    MEDICINE, 2024, 103 (01) : E36844
  • [9] Exploring the mechanism of Astragali radix for promoting osteogenic differentiation based on network pharmacology, molecular docking, and experimental validation
    Tian, Zenghui
    Li, Yingying
    Wang, Xiaoying
    Cui, Kaiying
    Guo, Jinxing
    Wang, Mingliang
    Hao, Yanke
    Zhang, Farong
    CHEMICAL BIOLOGY & DRUG DESIGN, 2023, 102 (06) : 1489 - 1505
  • [10] Exploring the mechanism of curcumin in the treatment of colon cancer based on network pharmacology and molecular docking
    He, Qingmin
    Liu, Chuan
    Wang, Xiaohan
    Rong, Kang
    Zhu, Mingyang
    Duan, Liying
    Zheng, Pengyuan
    Mi, Yang
    FRONTIERS IN PHARMACOLOGY, 2023, 14