Robust decision-making for autonomous vehicles via deep reinforcement learning and expert guidance

被引:0
|
作者
Li, Feng-Jie [1 ]
Zhang, Chun-Yang [1 ]
Chen, C. L. Philip [2 ]
机构
[1] Fuzhou Univ, Coll Comp & Data Sci, 2 Xueyuan Rd, Fuzhou 350001, Fujian, Peoples R China
[2] South China Univ Technol, Sch Engn & Comp Sci, 381 Wushan Rd, Guangzhou 510640, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Autonomous vehicles; Decision-making; Human driving knowledge; Deep reinforcement learning; LANE-CHANGE;
D O I
10.1007/s10489-025-06319-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Accurate decision-making within highly interactive driving environments is vital for the safety of self-driving vehicles. Despite the significant progress achieved by the existing models for autonomous vehicle decision-making tasks, there remains untapped potential for further exploration in this field. Previous models have focused primarily on specific scenarios or single tasks, with inefficient sample utilization and weak robustness problems, making them challenging to apply in practice. Motivated by this, a robust decision-making method named DRL-EPKG is proposed, which enables the simultaneous determination of vertical and horizontal behaviors of driverless vehicles without being limited to specific driving scenarios. Specifically, the DRL-EPKG integrates human driving knowledge into a framework of soft actor-critic (SAC), where we derive expert policy by a generative model: variational autoencoders (VAE), train agent policy by employing the SAC algorithm and further guide the behaviors of the agent by regulating the Wasserstein distance between the two policies. Moreover, a multidimensional reward function is designed to comprehensively consider safety, driving velocity, energy efficiency, and passenger comfort. Finally, several baseline models are employed for comparative evaluation in three highly dynamic driving scenarios. The findings demonstrate that the proposed model outperforms the baselines regarding the success rate, highlighting the practical applicability and robustness of DRL-EPKG in addressing complex, real-world problems in autonomous driving.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Decision-Making Strategy on Highway for Autonomous Vehicles Using Deep Reinforcement Learning
    Liao, Jiangdong
    Liu, Teng
    Tang, Xiaolin
    Mu, Xingyu
    Huang, Bing
    Cao, Dongpu
    IEEE ACCESS, 2020, 8 (08): : 177804 - 177814
  • [2] Decision-Making in Fallback Scenarios for Autonomous Vehicles: Deep Reinforcement Learning Approach
    Lee, Cheonghwa
    An, Dawn
    APPLIED SCIENCES-BASEL, 2023, 13 (22):
  • [3] Deep Reinforcement Learning Based Game-Theoretic Decision-Making for Autonomous Vehicles
    Yuan, Mingfeng
    Shan, Jinjun
    Mi, Kevin
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (02) : 818 - 825
  • [4] A Deep Reinforcement Learning Decision-Making Approach for Adaptive Cruise Control in Autonomous Vehicles
    Ghraizi, Dany
    Talj, Reine
    Francis, Clovis
    2023 21ST INTERNATIONAL CONFERENCE ON ADVANCED ROBOTICS, ICAR, 2023, : 71 - 78
  • [5] Decision-Making Models for Autonomous Vehicles at Unsignalized Intersections Based on Deep Reinforcement Learning
    Xu, Shu-Yuan
    Chen, Xue-Mei
    Wang, Zi-Jia
    Hu, Yu-Hui
    Han, Xin-Tong
    2022 INTERNATIONAL CONFERENCE ON ADVANCED ROBOTICS AND MECHATRONICS (ICARM 2022), 2022, : 672 - 677
  • [6] Autonomous Decision-Making for Aerobraking via Parallel Randomized Deep Reinforcement Learning
    Falcone, Giusy
    Putnam, Zachary R. R.
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2023, 59 (03) : 3055 - 3070
  • [7] Toward Trustworthy Decision-Making for Autonomous Vehicles: A Robust Reinforcement Learning Approach with Safety Guarantees
    He, Xiangkun
    Huang, Wenhui
    Lv, Chen
    ENGINEERING, 2024, 33 : 77 - 89
  • [8] Autonomous Vehicles' Decision-Making Behavior in Complex Driving Environments Using Deep Reinforcement Learning
    Qi, Xiao
    Ye, Yingjun
    Sun, Jian
    CICTP 2019: TRANSPORTATION IN CHINA-CONNECTING THE WORLD, 2019, : 5853 - 5864
  • [9] Deep imitative reinforcement learning with gradient conflict-free for decision-making in autonomous vehicles
    Shan, Zitong
    Zhao, Jian
    Huang, Wenhui
    Zhao, Yang
    Ge, Linhe
    Zhong, Shouren
    Hu, Hongyu
    Lv, Chen
    Zhu, Bing
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2025, 173
  • [10] A DECISION-MAKING METHOD FOR AUTONOMOUS VEHICLES BASED ON SIMULATION AND REINFORCEMENT LEARNING
    Zheng, Rui
    Liu, Chunming
    Guo, Qi
    PROCEEDINGS OF 2013 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), VOLS 1-4, 2013, : 362 - 369