An appropriate spatial structure of a power battery supply network is crucial for the specialization and scale development of key components in new energy vehicles, accelerating the transformation and upgrade of the industry. This paper investigates the cooperative relationships among supply chain enterprises from the perspective of complex networks. Employing methodologies such as the gravity model and Moran's I analysis, it explores the spatial structural characteristics and correlation patterns of the power battery supply network in China and discusses the influencing factors using the quadratic assignment procedure, revealing the mechanisms behind the differences in the spatial distributions of the power battery supply network. The results indicate that the distribution of power battery enterprises is densely concentrated in the eastern and southern regions, whereas the western region has a sparse distribution. The spatial supply network consists of a four-tier linkage system, encompassing 135 prefecture-level cities, with Chongqing, Shanghai, Nanjing, and other cities particularly prominent. Overall, the degree of agglomeration is low, with coastal cities dominating the landscape and inland cities serving as complementary regions. Most areas are characterized as insignificant or low-high regions, and the regional linkage effect of core cities is not pronounced. There is a notable lack of significance and high spatial heterogeneity. Four types of factors-spatial factors, market factors, agglomeration economies, and innovation levels-jointly influence and shape the spatial structure of the power battery supply network.