Limiting Profile of Solutions for Schrödinger-Poisson System with Shrinking Self-Focusing Core

被引:0
|
作者
Shuai, Wei [1 ,2 ]
Ye, Jianghua [1 ]
机构
[1] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
[2] Cent China Normal Univ, Hubei Key Lab Math Sci, Wuhan 430079, Peoples R China
关键词
Schr & ouml; dinger-Poisson system; Limiting profile; Self-focusing core; Penalization method; Nehari manifold; SCHRODINGER-POISSON SYSTEM; GROUND-STATE SOLUTIONS; KLEIN-GORDON-MAXWELL; THOMAS-FERMI; POSITIVE SOLUTIONS; BOUND-STATES; EXISTENCE; EQUATIONS; ATOMS; HARTREE;
D O I
10.1007/s12220-024-01895-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the following Schr & ouml;dinger-Poisson system -Delta u+u+Phi(y)u=Qn(y)|u|p-2u,y is an element of R3,-Delta Phi(y)=u2,y is an element of R3,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta u+u+\Phi (y)u=Q_n(y)|u|<^>{p-2}u, \hspace{3mm}y \in {\mathbb {R}}<^>3,\\ -\Delta \Phi (y) =u<^>2, \hspace{3mm}y \in {\mathbb {R}}<^>3, \end{array}\right. } \end{aligned}$$\end{document}where p is an element of(4,6)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\in (4,6)$$\end{document} and Qn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_n$$\end{document} are concrete bounded functions whose self-focusing core supp{Qn+}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$supp\{Q_n<^>+\}$$\end{document} shrinks to a finite set of points as n ->infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\rightarrow \infty $$\end{document}. We prove the existence of positive ground state solution un\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_n$$\end{document} corresponding to Qn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_n$$\end{document} and study the limiting profile of un\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_n$$\end{document} as n ->infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\rightarrow \infty $$\end{document}. We also prove the existence of localized bound state solutions for above Schr & ouml;dinger-Poisson system by using penalization method. Moreover, by using Green's representation formula, we improve the result in [14, Theorem 1.3] for nonlinear Schr & ouml;dinger equation.
引用
收藏
页数:41
相关论文
共 50 条
  • [1] Limiting profile of solutions for Schrödinger equations with shrinking self-focusing core
    Xiang-Dong Fang
    Zhi-Qiang Wang
    Calculus of Variations and Partial Differential Equations, 2020, 59
  • [2] Limiting profile of solutions for Schrodinger equations with shrinking self-focusing core
    Fang, Xiang-Dong
    Wang, Zhi-Qiang
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2020, 59 (04)
  • [3] THE LIMITING PROFILE OF SOLUTIONS FOR SEMILINEAR ELLIPTIC SYSTEMS WITH A SHRINKING SELF-FOCUSING CORE
    金可
    石影
    谢华飞
    Acta Mathematica Scientia, 2024, 44 (02) : 583 - 608
  • [4] Limiting profile of solutions for sublinear elliptic equations with shrinking self-focusing core
    Liu, Wei
    APPLICABLE ANALYSIS, 2023, 102 (12) : 3340 - 3347
  • [5] The limiting profile of solutions for semilinear elliptic systems with a shrinking self-focusing core
    Ke Jin
    Ying Shi
    Huafei Xie
    Acta Mathematica Scientia, 2024, 44 : 583 - 608
  • [6] On the existence of solutions for nonlinear Schrödinger-Poisson system
    Correa, Genivaldo dos Passos
    dos Santos, Gelson C. G.
    Silva, Julio Roberto S.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 531 (01)
  • [7] On the existence of solutions for nonhomogeneous Schrödinger-Poisson system
    Lixia Wang
    Shiwang Ma
    Xiaoming Wang
    Boundary Value Problems, 2016
  • [8] Infinitely many dichotomous solutions for the Schrödinger-Poisson system
    He, Yuke
    Li, Benniao
    Long, Wei
    SCIENCE CHINA-MATHEMATICS, 2024, 67 (09) : 2049 - 2070
  • [9] Infinitely many dichotomous solutions for the Schr?dinger-Poisson system
    Yuke He
    Benniao Li
    Wei Long
    Science China(Mathematics), 2024, 67 (09) : 2049 - 2070
  • [10] Normalized solutions for a fractional Schrödinger-Poisson system with critical growth
    He, Xiaoming
    Meng, Yuxi
    Squassina, Marco
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2024, 63 (06)