Cosmic-Plasma Environment, Singular Manifold and Symbolic Computation for a Variable-Coefficient (2+1)-Dimensional Zakharov-Kuznetsov-Burgers Equation

被引:0
|
作者
Gao, Xin-Yi [1 ,2 ,3 ,4 ,5 ]
Chen, Xiu-Qing [6 ]
Guo, Yong-Jiang [1 ,2 ]
Shan, Wen-Rui [1 ,2 ]
机构
[1] Beijing Univ Posts & Telecommun, ,Minist Educ, State Key Lab Informat Photon & Opt Commun, Key Lab Math & Informat Networks, Beijing 100876, Peoples R China
[2] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
[3] North China Univ Technol, Coll Sci, Beijing 100144, Peoples R China
[4] North China Univ Technol, Beijing Key Lab Integrat & Anal Large Scale Stream, Beijing 100144, Peoples R China
[5] Beijing Municipal Educ Commiss, Beijing Lab New Energy Storage Technol, Beijing 102206, Peoples R China
[6] Sun Yat Sen Univ, Sch Math Zhuhai, Zhuhai 519082, Peoples R China
基金
中国国家自然科学基金;
关键词
Cosmic plasmas; Singular manifold; Symbolic computation; Variable-coefficient (2+1)-dimensional Zakharov-Kuznetsov-Burgers equation; B & auml; cklund transformation; Solitons; TRAVELING-WAVE SOLUTIONS; ION-ACOUSTIC-WAVES; CONSERVATION-LAWS; ELECTRONS; PHYSICS; LAYERS; MODEL;
D O I
10.1007/s12346-024-01200-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Recent manifold contributions have been made to the nonlinear partial differential equations in fluid mechanics, plasma astrophysics, optical fiber communication, chemistry, etc., while people have known that most of the baryonic matter in the Universe is believed to exist as the plasmas. Hereby, with symbolic computation, we investigate a variable-coefficient (2+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2\!\!+\!\!1)$$\end{document}-dimensional Zakharov-Kuznetsov-Burgers equation for such cosmic-plasma environments as the neutron stars/pulsar magnetospheres, relativistic jets from the nuclei of active galaxies and quasars, early Universe, center of the Milky Way, white dwarfs, planetary rings, comets, Earth's auroral zone, interstellar molecular clouds, circumstellar disks and Earth's ionosphere. Through a noncharacteristic movable singular manifold, auto-B & auml;cklund transformation and solitons are gotten for the electrostatic wave potential or low-frequency dust-ion-acoustic electrostatic potential, leaning upon such cosmic-plasma coefficient functions as the dispersion, nonlinearity and dissipation coefficients, which are related to, for example, the ion plasma frequency, ion cyclotron frequency, viscosity of the ion fluid, positron density, photoelectron density, electron density, ion temperature, electron temperature, mass of an ion, mass of a dust particle, and interaction frequency between the ions and dust particles.
引用
收藏
页数:31
相关论文
共 50 条
  • [1] Symbolic Computation on Soliton Solutions for Variable-coefficient Quantum Zakharov-Kuznetsov Equation in Magnetized Dense Plasmas
    Awawdeh, Fadi
    Al-Shara', Safwan
    Jaradat, H. M.
    Alomari, A. K.
    Alshorman, Rafat
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2014, 15 (01) : 35 - 45
  • [2] Generalized variational structures of the (3+1)-dimensional Zakharov-Kuznetsov-Burgers equation in dusty plasma
    Wang, Kang-Jia
    Li, Shuai
    Shi, Feng
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2024, 21 (09)
  • [3] Lie symmetry analysis, nonlinear self-adjointness and conservation laws to an extended (2+1)-dimensional Zakharov-Kuznetsov-Burgers equation
    Wang, Gangwei
    Fakhar, K.
    COMPUTERS & FLUIDS, 2015, 119 : 143 - 148
  • [4] Integrability study on a generalized (2+1)-dimensional variable-coefficient Gardner model with symbolic computation
    Lue, Xing
    Tian, Bo
    Zhang, Hai-Qiang
    Xu, Tao
    Li, He
    CHAOS, 2010, 20 (04)
  • [5] In plasma physics and fluid dynamics: Symbolic computation on a (2+1)-dimensional variable-coefficient Sawada-Kotera system
    Gao, Xin-Yi
    APPLIED MATHEMATICS LETTERS, 2025, 159
  • [6] ANALYTIC ANALYSIS ON A GENERALIZED (2+1)-DIMENSIONAL VARIABLE-COEFFICIENT KORTEWEG-DE VRIES EQUATION USING SYMBOLIC COMPUTATION
    Zhang, Cheng
    Tian, Bo
    Li, Li-Li
    Xu, Tao
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2010, 24 (27): : 5359 - 5370
  • [7] Symbolic computation on a (2+1)-dimensional generalized variable-coefficient Boiti-Leon-Pempinelli system for the water waves
    Gao, Xin-Yi
    Guo, Yong-Jiang
    Shan, Wen-Rui
    CHAOS SOLITONS & FRACTALS, 2021, 150
  • [8] Integrability and Exact Solutions for a (2+1)-dimensional Variable-Coefficient KdV Equation
    Zhang Yu
    Xu Gui-Qiong
    APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2014, 9 (02): : 646 - 658
  • [9] Traveling wave solutions for the (2+1)-dimensional generalized Zakharov-Kuznetsov equation with variable coefficients
    Gao, Ben
    Wang, Yanxia
    OPTICAL AND QUANTUM ELECTRONICS, 2021, 53 (01)
  • [10] Solitonic interaction of a variable-coefficient (2+1)-dimensional generalized breaking soliton equation
    Qin, Yi
    Gao, Yi-Tian
    Shen, Yu-Jia
    Sun, Yu-Hao
    Meng, Gao-Qing
    Yu, Xin
    PHYSICA SCRIPTA, 2013, 88 (04)