Controllable face soft-biometric privacy enhancement based on attribute disentanglement

被引:0
|
作者
Huang, Weidi [1 ]
Yao, Zhiqiang [1 ]
Jin, Biao [1 ]
Chen, Zheyu [1 ]
Wang, Yue [1 ]
机构
[1] Fujian Normal Univ, Coll Comp & Cyber Secur, Fuzhou, Fujian, Peoples R China
来源
JOURNAL OF SUPERCOMPUTING | 2025年 / 81卷 / 04期
基金
中国国家自然科学基金;
关键词
Privacy protection; Soft-biometric; Attribute disentanglement; Controllability; Identity recognition; REPRESENTATIONS; RECOGNITION;
D O I
10.1007/s11227-025-07134-9
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Though the widespread application of face recognition systems facilitates user authentication and identification, it may result in potential changes in user privacy concerns. This is mainly because untrustworthy service providers utilize advanced deep learning models to automatically extract users' soft-biometric attributes without user consent, thereby posing significant privacy threats. Existing attribute privacy protection methods can obscure multi-attribute while preserving identity information, but they fail to adjust the level of privacy protection, so they have limited flexibility in various scenarios. To solve this problem, this paper proposes an attribute disentanglement network (ADNet) to generate perturbed images using attribute codes from the attribute disentanglement module (ADM), thereby obfuscating arbitrary classifiers while preserving identity recognition. Specifically, the designed ADM can separate attribute-related and attribute-unrelated codes from attribute codes, realizing privacy protection during the transformation of attribute-related code and preserving unrelated information. Moreover, a control factor alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document} is used to adjust the degree of transformation, and its value can be adjusted to meet various requirements. Extensive experimental results indicate that ADNet provides controllability for multi-attribute privacy protection while maintaining identity recognition utility. It meets the demands of different protection scenarios and outperforms previous soft-biometric privacy protection strategies.
引用
收藏
页数:29
相关论文
共 22 条
  • [1] An Attack on Facial Soft-Biometric Privacy Enhancement
    Osorio-Roig, Daile
    Rathgeb, Christian
    Drozdowski, Pawel
    Terhoerst, Philipp
    Struc, Vitomir
    Busch, Christoph
    IEEE TRANSACTIONS ON BIOMETRICS, BEHAVIOR, AND IDENTITY SCIENCE, 2022, 4 (02): : 263 - 275
  • [2] ASPECD: Adaptable Soft-Biometric Privacy-Enhancement Using Centroid Decoding for Face Verification
    Rot, Peter
    Terhorst, Philipp
    Peer, Peter
    Struc, Vitomir
    2024 IEEE 18TH INTERNATIONAL CONFERENCE ON AUTOMATIC FACE AND GESTURE RECOGNITION, FG 2024, 2024,
  • [3] On Soft-Biometric Information Stored in Biometric Face Embeddings
    Terhorst P.
    Fahrmann D.
    Damer N.
    Kirchbuchner F.
    Kuijper A.
    IEEE Transactions on Biometrics, Behavior, and Identity Science, 2021, 3 (04): : 519 - 534
  • [4] Privacy Evaluation Protocols for the Evaluation of Soft-Biometric Privacy-Enhancing Technologies
    Terhoerst, Philipp
    Huber, Marco
    Damer, Naser
    Rot, Peter
    Kirchbuchner, Florian
    Struc, Vitomir
    Kuijper, Arjan
    2020 INTERNATIONAL CONFERENCE OF THE BIOMETRICS SPECIAL INTEREST GROUP (BIOSIG), 2020, P-306
  • [5] Soft-biometric Detection based on Supervised Learning
    Zhou, Zhi
    Ong, Glen Hong Ting
    Teoh, Eam Khwang
    2014 13TH INTERNATIONAL CONFERENCE ON CONTROL AUTOMATION ROBOTICS & VISION (ICARCV), 2014, : 234 - 238
  • [6] PrivacyProber: Assessment and Detection of Soft-Biometric Privacy-Enhancing Techniques
    Rot, Peter
    Grm, Klemen
    Peer, Peter
    Struc, Vitomir
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2024, 21 (04) : 2869 - 2887
  • [7] Fair Face Verification by Using Non-Sensitive Soft-Biometric Attributes
    Villalobos, Esteban
    Mery, Domingo
    Bowyer, Kevin
    IEEE ACCESS, 2022, 10 : 30168 - 30179
  • [8] Soft Biometric Privacy: Retaining Biometric Utility of Face Images while Perturbing Gender
    Mirjalili, Vahid
    Ross, Arun
    2017 IEEE INTERNATIONAL JOINT CONFERENCE ON BIOMETRICS (IJCB), 2017, : 564 - 573
  • [9] Person Identification Based on Visual Analysis of Soft-Biometric Features in Surveillance Environments
    Moctezuma, Daniela
    Conde, Cristina
    Martin de Diego, Isaac
    Cabello, Enrique
    PATTERN RECOGNITION AND IMAGE ANALYSIS, IBPRIA 2013, 2013, 7887 : 648 - 657
  • [10] Enhancing Soft Biometric Face Template Privacy with Mutual Information-Based Image Attacks
    Rezgui, Zohra
    Strisciuglio, Nicola
    Veldhuis, Raymond
    2024 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION WORKSHOPS, WACVW 2024, 2024, : 1141 - 1149