Transition Metal Dichalcogenide Superconductor Tunneling Devices: A Review

被引:0
|
作者
Steinberg, Hadar [1 ,2 ]
Simon, Shahar [1 ,2 ]
Aprili, Marco [3 ]
Quay, Charis Huei Li [3 ]
机构
[1] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel
[2] Hebrew Univ Jerusalem, Ctr Nanosci & Nanotechnol, IL-91904 Jerusalem, Israel
[3] Univ Paris Saclay, Lab Phys Solides, CNRS, UMR 8502, Batiment 510, F-91405 Orsay, France
关键词
Tunneling; Superconductivity; Transition-metal dichalcogenides; HEXAGONAL BORON-NITRIDE; SPIN POLARIZATION; CRITICAL FIELD; STATE; SPECTROSCOPY; TRANSISTOR; NBSE2; BULK; IMBALANCE; PHYSICS;
D O I
10.1007/s10948-025-06918-7
中图分类号
O59 [应用物理学];
学科分类号
摘要
We review recent progress in the study of transition metal dichalcogenide (TMD) superconductors-such as NbSe2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document} and TaS2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document}--in tunnel devices where the barrier is also a van der Waals material. Superconducting TMDs are of particular interest due to their lack of in-plane centrosymetry, leading to Ising superconductivity: conventional s-wave superconductivity where the internal spin axis of Cooper pairs is held out of plane by the Ising spin-orbit field. The devices reviewed are fabricated by placing ultrathin barriers-typically few-layer insulating TMDs-on top of an exfoliated superconductor and subsequent patterning of tunneling electrodes. This results in high-quality normal-insulator-superconductor (NIS) tunnel junctions, which enable the measurement of superconducting spectra with fine energy resolution, down to dilution refrigerator temperatures (below 100 mK). As reported by the authors and others, these spectra reveal intricate signatures of TMD physics from the bulk to the 2D limit. We report on studies showing the two-band superconducting character of (bulk) NbSe2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document}, revealing different depairing processes in the two different NbSe2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document} bands. These two bands also appear in the spectral weight of vortex-bound subgap states. At high in-plane magnetic fields, many unconventional superconducting phases have been predicted, which are not necessarily mutually exclusive: triplet, orbital Fulde-Ferrell-Larkin-Ovchinnikov (FFLO), striped FFLO, pair density wave, nematicity etc. We report on the spectral evolution of NbSe2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document} at high in-plane magnetic fields, which we interpret as evidence for odd-parity equal-spin triplet superconductivity. Finally, we present our vision for addressing these and other open questions with vdW tunneling devices.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] NbSeTe-a new layered transition metal dichalcogenide superconductor
    Yan, Dong
    Wang, Shu
    Lin, Yishi
    Wang, Guohua
    Zeng, Yijie
    Boubeche, Mebrouka
    He, Yuan
    Ma, Jie
    Wang, Yihua
    Yao, Dao-Xin
    Luo, Huixia
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2020, 32 (02)
  • [2] Atomistic modeling of a superconductor-transition metal dichalcogenide-superconductor Josephson junction
    Nieminen, Jouko
    Dhara, Sayandip
    Chiu, Wei -Chi
    Mucciolo, Eduardo R.
    Bansil, Arun
    PHYSICAL REVIEW B, 2023, 107 (17)
  • [3] Novel Functional Devices of Transition Metal Dichalcogenide Monolayers
    Takenobu, Taishi
    Pu, Jiang
    Li, Lain-Jong
    Iwasa, Yoshihiro
    2014 21ST INTERNATIONAL WORKSHOP ON ACTIVE-MATRIX FLATPANEL DISPLAYS AND DEVICES (AM-FPD), 2014, : 283 - 286
  • [4] Novel functional devices of transition metal dichalcogenide monolayers
    Takenobu, Taishi
    6TH IEEE ELECTRON DEVICES TECHNOLOGY AND MANUFACTURING CONFERENCE (EDTM 2022), 2022, : 216 - 218
  • [5] THEORY OF TUNNELING IN METAL SUPERCONDUCTOR DEVICES - SUPERCURRENTS IN THE SUPERCONDUCTOR GAP AT ZERO TEMPERATURE
    GARCIA, N
    FLORES, F
    GUINEA, F
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1988, 6 (02): : 323 - 326
  • [6] Scanning tunneling microscopy image of transition-metal-dichalcogenide surfaces
    Univ of Tokyo, Tokyo, Japan
    Surface Science, 1996, 357-358 (1-3): : 317 - 321
  • [7] Scanning tunneling microscopy image of transition-metal-dichalcogenide surfaces
    Kobayashi, K
    Yamauchi, J
    SURFACE SCIENCE, 1996, 357 (1-3) : 317 - 321
  • [8] Continue the Scaling of Electronic Devices with Transition Metal Dichalcogenide Semiconductors
    Zheng, Fangyuan
    Meng, Wanqing
    Li, Lain-Jong
    NANO LETTERS, 2025, 25 (10) : 3683 - 3691
  • [9] Spin–valley locking in the normal state of a transition-metal dichalcogenide superconductor
    L. Bawden
    S. P. Cooil
    F. Mazzola
    J. M. Riley
    L. J. Collins-McIntyre
    V. Sunko
    K. W. B. Hunvik
    M. Leandersson
    C. M. Polley
    T. Balasubramanian
    T. K. Kim
    M. Hoesch
    J. W. Wells
    G. Balakrishnan
    M. S. Bahramy
    P. D. C. King
    Nature Communications, 7
  • [10] Atomistic Simulations of Device Physics in Monolayer Transition Metal Dichalcogenide Tunneling Transistors
    Liu, Fei
    Wang, Jian
    Guo, Hong
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2016, 63 (01) : 311 - 317