This study focuses on examining the molecular geometry, biological activities, as well as the electronic and vibrational properties of 2-(4-tert-butyl-2,6-dimethyl-3-hydroxybenzyl)-2-imidazoline (oxymetazoline). The investigation integrates quantum chemical calculations, molecular docking, and experimental methods. The ground state geometry and electronic structure of oxymetazoline are optimized using the DFT/B3LYP/6-311 + + G(d,p) basis set. To predict the chemical reactivity of the title molecule, MEPS, frontier orbital analysis, and electronic reactivity descriptors were used. Charge transfer within the molecule was presented using HOMO and LUMO energies. The energies of intra and intermolecular hydrogen bonds in molecules, as well as their electronic properties, were examined using natural bond orbitals (NBOs). To determine the efficiency of the title chemical, molecular docking tests were undertaken against alpha 1A and alpha 2A adrenergic receptors (alpha 1A; PDB ID: 7YM8, 4MQT, and alpha 2A; PDB ID: 3QAK, 7EJ8). According to the results, we found that the situation with the lowest binding score and therefore the best binding affinity is the OMZ-7YM8 interaction. The analysis of drug-likeness, physicochemical properties, and ADMET results indicates that the title molecule possesses a favorable pharmacokinetic profile and adheres to Lipinski's Rule of Five, demonstrating efficient absorption and distribution. Consequently, the study supports the use of oxymetazoline as an inhibitor of alpha 1A and alpha 2A adrenergic receptors.