Multi-objective collaborative optimization of active distribution network operation based on improved particle swarm optimization algorithm

被引:0
|
作者
Sun, Shumin [1 ]
Yu, Peng [1 ]
Xing, Jiawei [1 ]
Wang, Yuejiao [1 ]
Yang, Song [1 ]
机构
[1] State Grid Shandong Elect Power Res Inst, Jinan 250002, Peoples R China
来源
SCIENTIFIC REPORTS | 2025年 / 15卷 / 01期
关键词
Improved particle swarm optimization; Active distribution network; Distribution network operation; Multi-objective; Collaborative optimization;
D O I
10.1038/s41598-025-90907-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
ADN (Active distribution network) is easily disturbed during its operation, resulting in problems such as power supply quality degradation and operation safety deterioration. Therefore, the research and simulation of multi-objective collaborative optimization of ADN operation based on improved particle swarm optimization algorithm are proposed. An objective function of multi-objective collaborative optimization configuration for ADN operation is constructed. According to this objective function, the improved particle swarm optimization algorithm is used to optimize the collaborative optimization configuration, and the population particles are mutated, and the obtained result is the optimal energy storage capacity configuration result of power system. The architecture of the simulation platform for cooperative operation of ADN is constructed, and the load grades of distribution system are divided. Based on the hierarchical management of loads in distributed systems, multi-objective collaborative optimization of ADN operating voltage in both frequency and time domains has been achieved. The experimental results show that during peak periods, the system's load capacity is only twice that of before optimization or other situations, achieving stable power supply for peak power demand. Multi-objective collaborative optimization in frequency domain and time domain has the best effect. Under the conditions of reactive power and active power, the multi-objective collaborative optimization method of ADN operation has good results.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] An improved multi-objective particle swarm optimization algorithm
    Zhang, Qiuming
    Xue, Siqing
    ADVANCES IN COMPUTATION AND INTELLIGENCE, PROCEEDINGS, 2007, 4683 : 372 - +
  • [2] Improved multi-objective particle swarm optimization algorithm
    College of Automation, Northwestern Polytechnical University, Xi'an 710129, China
    不详
    Liu, B. (lbn1987113@163.com), 2013, Beijing University of Aeronautics and Astronautics (BUAA) (39):
  • [3] Multi-objective Particle Swarm Optimization Algorithm Based on the Disturbance Operation
    Gao, Yuelin
    Qu, Min
    ARTIFICIAL INTELLIGENCE AND COMPUTATIONAL INTELLIGENCE, PT I, 2011, 7002 : 591 - 600
  • [4] An improved multi-objective cultural algorithm based on particle swarm optimization
    Wu, Ya-Li
    Xu, Li-Qing
    Kongzhi yu Juece/Control and Decision, 2012, 27 (08): : 1127 - 1132
  • [5] An Improved Competitive Mechanism based Particle Swarm Optimization Algorithm for Multi-Objective Optimization
    Yuen, Man-Chung
    Ng, Sin-Chun
    Leung, Man-Fai
    2020 10TH INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND TECHNOLOGY (ICIST), 2020, : 209 - 218
  • [6] Reactive power optimization for distribution network system with wind power based on improved multi-objective particle swarm optimization algorithm
    Kuang, Honghai
    Su, Fuqing
    Chang, Yurui
    Kai, Wang
    He, Zhiyi
    ELECTRIC POWER SYSTEMS RESEARCH, 2022, 213
  • [7] Multi-objective Optimization of Reverse Logistics Network Based on Improved Particle Swarm Optimization
    Lu, Yanchao
    Li, Xiaoyan
    Liang, Litao
    2008 7TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-23, 2008, : 7476 - +
  • [8] Optimal configuration of energy storage in an active distribution network based on improved multi-objective particle swarm optimization
    Yan Q.
    Dong X.
    Mu J.
    Ma Y.
    Dianli Xitong Baohu yu Kongzhi/Power System Protection and Control, 2022, 50 (10): : 11 - 19
  • [9] An Improved Hybrid Multi-objective Particle Swarm Optimization Algorithm
    Zhou, Zuan
    Dai, Guangming
    Fang, Pan
    Chen, Fangjie
    Tan, Yi
    ADVANCES IN COMPUTATION AND INTELLIGENCE, PROCEEDINGS, 2008, 5370 : 181 - 188
  • [10] IMOPSO: An Improved Multi-objective Particle Swarm Optimization Algorithm
    Ma, Borong
    Hua, Jun
    Ma, Zhixin
    Li, Xianbo
    PROCEEDINGS OF 2016 5TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND NETWORK TECHNOLOGY (ICCSNT), 2016, : 376 - 380