In this paper, we first study the linear complementary pair (abbreviated to LCP) of codes over finite non-chain rings Ru,v,q=Fq+uFq+vFq+uvFq\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$R_{u,v,q}={\mathbb {F}}_q+u{\mathbb {F}}_q+ v{\mathbb {F}}_q+uv{\mathbb {F}}_q$$\end{document} with u2=u,v2=v\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$u^2=u,v^2=v$$\end{document}. Then we provide a method of constructing entanglement-assisted quantum error-correcting (abbreviated to EAQEC) codes from an LCP of codes of length n over Ru,v,q\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$R_{u,v,q}$$\end{document} using CSS. To enrich the variety of available EAQEC codes, some new EAQEC codes are given in the sense that their parameters are different from all the previous constructions.