On the Measure Concentration of Infinitely Divisible Distributions

被引:0
|
作者
Zhang, Jing [1 ]
Hu, Zechun [2 ]
Sun, Wei [3 ]
机构
[1] Hainan Normal Univ, Sch Math & Stat, Haikou 571158, Peoples R China
[2] Sichuan Univ, Coll Math, Chengdu 610065, Peoples R China
[3] Concordia Univ, Dept Math & Stat, Montreal, PQ H3G 1M8, Canada
基金
加拿大自然科学与工程研究理事会; 中国国家自然科学基金;
关键词
measure concentration; infinitely divisible distribution; geometric distribution; Poisson distribution; Berry-Esseen theorem;
D O I
10.1007/s10473-025-0211-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let I be the set of all infinitely divisible random variables with finite second moments, I-0={X is an element of I:Var(X)>0},P-I=inf (X is an element of I) P{|X-E[X]|<=root Var(X)} and P-I0=inf(X is an element of I0)P{|X-E[X]|<root Var(X)}. Firstly, we prove that P-I >= P-I0>0. Secondly, we find the exact values of inf(X is an element of J)P{|X-E[X]|<=root Var(X)} and inf(X is an element of J)P{|X-E[X]|<root Var(X)} for the cases that J is the set of all geometric random variables, symmetric geometric random variables, Poisson random variables and symmetric Poisson random variables, respectively. As a consequence, we obtain that P-I <= e(-1)& sum;(infinity)(k=0)1/2(2k)(k!)(2)approximate to 0.46576 and PI0 <= e(-1)approximate to 0.36788.
引用
收藏
页码:473 / 492
页数:20
相关论文
共 50 条