EEG-based emotion recognition using multi-scale dynamic CNN and gated transformer

被引:1
|
作者
Cheng, Zhuoling [1 ]
Bu, Xuekui [1 ]
Wang, Qingnan [2 ]
Yang, Tao [3 ]
Tu, Jihui [1 ]
机构
[1] Yangtze Univ, Sch Elect Informat & Elect Engn, Jingzhou 434100, Hubei, Peoples R China
[2] Huaihua Univ, Sch Phys Elect & Intelligent Mfg, Huaihua 418000, Hunan, Peoples R China
[3] Jingzhou First Peoples Hosp, Dept Neurol, Jingzhou 434000, Hubei, Peoples R China
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
EEG signals; Temporal-spatial features; Multi-scale dynamic 1D CNN; Gated transformer encoder; Temporal convolution network; 1D;
D O I
10.1038/s41598-024-82705-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Emotions play a crucial role in human thoughts, cognitive processes, and decision-making. EEG has become a widely utilized tool in emotion recognition due to its high temporal resolution, real-time monitoring capabilities, portability, and cost-effectiveness. In this paper, we propose a novel end-to-end emotion recognition method from EEG signals, called MSDCGTNet, which is based on the Multi-Scale Dynamic 1D CNN and the Gated Transformer. First, the Multi-Scale Dynamic CNN is used to extract complex spatial and spectral features from raw EEG signals, which not only avoids information loss but also reduces computational costs associated with the time-frequency conversion of signals. Then, the Gated Transformer Encoder is utilized to capture global dependencies of EEG signals. This encoder focuses on specific regions of the input sequence while reducing computational resources through parallel processing with the improved multi-head self-attention mechanisms. Third, the Temporal Convolution Network is used to extract temporal features from the EEG signals. Finally, the extracted abstract features are fed into a classification module for emotion recognition. The proposed method was evaluated on three publicly available datasets: DEAP, SEED, and SEED_IV. Experimental results demonstrate the high accuracy and efficiency of the proposed method for emotion recognition. This approach proves to be robust and suitable for various practical applications. By addressing challenges posed by existing methods, the proposed method provides a valuable and effective solution for the field of Brain-Computer Interface (BCI).
引用
收藏
页数:19
相关论文
共 50 条
  • [1] EEG-based Emotion Recognition Using Multi-scale Window Deep Forest
    Yao, Huifang
    He, Hong
    Wang, Shilong
    Xie, Zhangping
    2019 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2019), 2019, : 381 - 386
  • [2] EEG-Based Emotion Recognition Using Spatial-Temporal-Connective Features via Multi-Scale CNN
    Li, Tianyi
    Fu, Baole
    Wu, Zixuan
    Liu, Yinhua
    IEEE ACCESS, 2023, 11 : 41859 - 41867
  • [3] Spatiotemporal Gated Graph Transformer for EEG-Based Emotion Recognition
    Chang, Yadong
    Zheng, Xianwei
    Chen, Yijun
    Li, Xutao
    Miao, Qing
    IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 1630 - 1634
  • [4] EEG-Based Emotion Recognition by Convolutional Neural Network with Multi-Scale Kernels
    Phan, Tran-Dac-Thinh
    Kim, Soo-Hyung
    Yang, Hyung-Jeong
    Lee, Guee-Sang
    SENSORS, 2021, 21 (15)
  • [5] Multi-Scale Frequency Bands Ensemble Learning for EEG-Based Emotion Recognition
    Shen, Fangyao
    Peng, Yong
    Kong, Wanzeng
    Dai, Guojun
    SENSORS, 2021, 21 (04) : 1 - 20
  • [6] EEG-based emotion recognition using hybrid CNN and LSTM classification
    Chakravarthi, Bhuvaneshwari
    Ng, Sin-Chun
    Ezilarasan, M. R.
    Leung, Man-Fai
    FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2022, 16
  • [7] Gated transformer network based EEG emotion recognition
    Bilgin, Metin
    Mert, Ahmet
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (10) : 6903 - 6910
  • [8] A Neural Network for EEG Emotion Recognition that Combines CNN and Transformer for Multi-scale Spatial-temporal Feature Extraction
    Hu, Zhangfang
    Wu, Haoze
    He, Lingxiao
    IAENG International Journal of Computer Science, 2024, 51 (08) : 1094 - 1104
  • [9] EFFICIENT SPEECH EMOTION RECOGNITION USING MULTI-SCALE CNN AND ATTENTION
    Peng, Zixuan
    Lu, Yu
    Pan, Shengfeng
    Liu, Yunfeng
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 3020 - 3024
  • [10] Bridge Graph Attention Based Graph Convolution Network With Multi-Scale Transformer for EEG Emotion Recognition
    Yan, Huachao
    Guo, Kailing
    Xing, Xiaofen
    Xu, Xiangmin
    IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2024, 15 (04) : 2042 - 2054