Holomorphic Legendrian Curves in Convex Domains

被引:0
|
作者
Svetina, Andrej [1 ]
机构
[1] Univ Ljubljana, Fac Math & Phys, Jadranska ul 19, Ljubljana 1000, Slovenia
关键词
Holomorphic Legendrian curve; Convex domain; Complete Legendrian embedding; SURFACES;
D O I
10.1007/s12220-024-01872-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove several results on approximation and interpolation of holomorphic Legendrian curves in convex domains in C2n+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}<^>{2n+1}$$\end{document}, n >= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 2$$\end{document}, with the standard contact structure. Namely, we show that such a curve, defined on a compact bordered Riemann surface M, whose image lies in the interior of a convex domain D subset of C2n+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {D}\subset \mathbb {C}<^>{2n+1}$$\end{document}, may be approximated uniformly on compacts in the interior IntM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\textrm{Int}\,}}M$$\end{document} by holomorphic Legendrian curves IntM -> D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\textrm{Int}\,}}M \rightarrow \mathscr {D}$$\end{document} such that the approximants are proper, complete, agree with the starting curve on a given finite set in IntM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\textrm{Int}\,}}M$$\end{document} to a given finite order, and hit a specified diverging discrete set in the convex domain. We first show approximation of this kind on bounded strongly convex domains and then generalise it to arbitrary convex domains. As a consequence we show that any compact bordered Riemann surface properly embeds into a convex domain as a complete curve under a suitable geometric condition on the boundary of the codomain.
引用
收藏
页数:32
相关论文
共 50 条
  • [1] Holomorphic Legendrian curves
    Alarcon, Antonio
    Forstneric, Franc
    Lopez, Francisco J.
    COMPOSITIO MATHEMATICA, 2017, 153 (09) : 1945 - 1986
  • [2] MERGELYAN APPROXIMATION THEOREM FOR HOLOMORPHIC LEGENDRIAN CURVES
    Forstneric, F. R. A. N. C.
    ANALYSIS & PDE, 2022, 15 (04): : 983 - 1010
  • [3] Holomorphic Legendrian Curves in Projectivised Cotangent Bundles
    Forstneric, Franc
    Larusson, Finnur
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2022, 71 (01) : 93 - 124
  • [4] Convex Integration and Legendrian Approximation of Curves
    Hungerbuehler, Norbert
    Mettler, Thomas
    Wasem, Micha
    JOURNAL OF CONVEX ANALYSIS, 2017, 24 (01) : 309 - 317
  • [5] Approximation of holomorphic Legendrian curves with jet-interpolation
    Svetina, Andrej
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 531 (02)
  • [6] Darboux Charts Around Holomorphic Legendrian Curves and Applications
    Alarcon, Antonio
    Forstneric, Franc
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2019, 2019 (03) : 893 - 922
  • [7] BOUNDEDLY HOLOMORPHIC CONVEX DOMAINS
    KIM, DS
    PACIFIC JOURNAL OF MATHEMATICS, 1973, 46 (02) : 441 - 449
  • [8] Uniform domains on holomorphic curves
    Arbelaez, Hugo
    Chuaqui, Martin
    Sierra, Willy
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2015, 60 (07) : 1015 - 1031
  • [9] Proper Holomorphic Legendrian Curves in SL2(C)
    Alarcon, Antonio
    JOURNAL OF GEOMETRIC ANALYSIS, 2017, 27 (04) : 3013 - 3029
  • [10] Holomorphic mappings of domains in CN onto convex domains
    Suffridge, TJ
    GEOMETRIC FUNCTION THEORY IN SEVERAL COMPLEX VARIABLES, 2004, : 295 - 309