We prove several results on approximation and interpolation of holomorphic Legendrian curves in convex domains in C2n+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}<^>{2n+1}$$\end{document}, n >= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 2$$\end{document}, with the standard contact structure. Namely, we show that such a curve, defined on a compact bordered Riemann surface M, whose image lies in the interior of a convex domain D subset of C2n+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {D}\subset \mathbb {C}<^>{2n+1}$$\end{document}, may be approximated uniformly on compacts in the interior IntM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\textrm{Int}\,}}M$$\end{document} by holomorphic Legendrian curves IntM -> D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\textrm{Int}\,}}M \rightarrow \mathscr {D}$$\end{document} such that the approximants are proper, complete, agree with the starting curve on a given finite set in IntM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\textrm{Int}\,}}M$$\end{document} to a given finite order, and hit a specified diverging discrete set in the convex domain. We first show approximation of this kind on bounded strongly convex domains and then generalise it to arbitrary convex domains. As a consequence we show that any compact bordered Riemann surface properly embeds into a convex domain as a complete curve under a suitable geometric condition on the boundary of the codomain.