Integrated Circuits for Quantum Machine Learning Based on Superconducting Artificial Atoms and Methods of Their Control

被引:0
|
作者
Tolstobrov, A. E. [1 ,2 ]
Kadyrmetov, Sh. V. [1 ]
Fedorov, G. P. [1 ,2 ,3 ]
Sanduleanu, S. V. [1 ,2 ,3 ]
Lubsanov, V. B. [1 ]
Kalacheva, D. A. [1 ,2 ,5 ]
Bolgar, A. N. [1 ]
Dmitriev, A. Yu. [1 ,2 ,3 ]
Korostylev, E. V. [1 ]
Tikhonov, K. S. [4 ]
Astafiev, O. V. [1 ,5 ]
机构
[1] Moscow Inst Phys & Technol, Moscow, Russia
[2] Natl Univ Sci & Technol MISIS, Moscow, Russia
[3] Russian Quantum Ctr, Skolkovo, Russia
[4] LD Landau Inst Theoret Phys, Chernogolovka, Russia
[5] Skolkovo Inst Sci & Technol, Skolkovo, Russia
基金
俄罗斯科学基金会;
关键词
QUBITS;
D O I
10.1007/s11141-024-10342-7
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper is devoted to the use of quantum integrated circuits based on superconducting artificial atoms to solve quantum machine learning problems. The process of designing such chips is de- scribed in detail, including the selection of the most important geometric parameters of the device, as well as numerical calculations of electromagnetic characteristics. The process of controlling a quantum integrated circuit is described. Much attention is paid to the implementation of single- and two-qubit operations. The qubit state readout procedure is also described. A brief introduction into the field of quantum machine learning is given. An algorithm that makes it possible to solve multilabel classification problems using quantum integrated circuits is described. The selection of optimal quantum circuits for the implementation of this algorithm is made using numerical simulations. The operation of the algorithm is demonstrated by the example of standard datasets. Obtained experimental results are compared with the results of theoretical calculations.
引用
收藏
页码:907 / 928
页数:22
相关论文
共 50 条
  • [1] Quantum geometric machine learning for quantum circuits and control
    Perrier, Elija
    Tao, Dacheng
    Ferrie, Chris
    NEW JOURNAL OF PHYSICS, 2020, 22 (10)
  • [2] Adaptive Methods for Machine Learning-Based Testing of Integrated Circuits and Boards
    Liu, Mengyun
    Chakrabarty, Krishnendu
    2021 IEEE INTERNATIONAL TEST CONFERENCE (ITC 2021), 2021, : 153 - 162
  • [3] Scalable quantum eraser with superconducting integrated circuits
    Diniz, Ciro Micheletti
    Villas-Boas, Celso J.
    Santos, Alan C.
    QUANTUM SCIENCE AND TECHNOLOGY, 2025, 10 (02):
  • [4] Universal quantum control based on parametric modulation in superconducting circuits
    李丹宇
    储继
    郑文
    兰栋
    赵杰
    李邵雄
    谭新生
    于扬
    Chinese Physics B, 2021, 30 (07) : 85 - 90
  • [5] Universal quantum control based on parametric modulation in superconducting circuits*
    Li, Dan-Yu
    Chu, Ji
    Zheng, Wen
    Lan, Dong
    Zhao, Jie
    Li, Shao-Xiong
    Tan, Xin-Sheng
    Yu, Yang
    CHINESE PHYSICS B, 2021, 30 (07)
  • [6] Benchmarking of Machine Learning Methods for Multiscale Thermal Simulation of Integrated Circuits
    Coenen, David
    Oprins, Herman
    Degraeve, Robin
    Wolf, Ingrid De
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2023, 42 (07) : 2264 - 2275
  • [7] Quantum Josephson junction circuits and the dawn of artificial atoms
    John M. Martinis
    Michel H. Devoret
    John Clarke
    Nature Physics, 2020, 16 : 234 - 237
  • [8] Quantum Josephson junction circuits and the dawn of artificial atoms
    Martinis, John M.
    Devoret, Michel H.
    Clarke, John
    NATURE PHYSICS, 2020, 16 (03) : 234 - 237
  • [9] Waveguide quantum electrodynamics with superconducting artificial giant atoms
    Kannan, Bharath
    Ruckriegel, Max J.
    Campbell, Daniel L.
    Frisk Kockum, Anton
    Braumuller, Jochen
    Kim, David K.
    Kjaergaard, Morten
    Krantz, Philip
    Melville, Alexander
    Niedzielski, Bethany M.
    Vepsalainen, Antti
    Winik, Roni
    Yoder, Jonilyn L.
    Nori, Franco
    Orlando, Terry P.
    Gustavsson, Simon
    Oliver, William D.
    NATURE, 2020, 583 (7818) : 775 - +
  • [10] Waveguide quantum electrodynamics with superconducting artificial giant atoms
    Bharath Kannan
    Max J. Ruckriegel
    Daniel L. Campbell
    Anton Frisk Kockum
    Jochen Braumüller
    David K. Kim
    Morten Kjaergaard
    Philip Krantz
    Alexander Melville
    Bethany M. Niedzielski
    Antti Vepsäläinen
    Roni Winik
    Jonilyn L. Yoder
    Franco Nori
    Terry P. Orlando
    Simon Gustavsson
    William D. Oliver
    Nature, 2020, 583 : 775 - 779