Intelligent Adjustment for Power System Operation Mode Based on Deep Reinforcement Learning

被引:0
|
作者
Hu, Wei [1 ]
Mi, Ning [2 ]
Wu, Shuang [3 ]
Zhang, Huiling [2 ]
Hu, Zhewen [4 ]
Zhang, Lei [4 ]
机构
[1] Tsinghua Univ, Dept Elect Engn, Beijing 100084, Peoples R China
[2] State Grid Ningxia Elect Power Co Ltd, Yinchuan 750001, Ningxia, Peoples R China
[3] State Grid Corp China, North China Branch, Beijing 100053, Peoples R China
[4] China Three Gorges Univ, Coll Elect Engn & New Energy, Yichang 443002, Hubei, Peoples R China
来源
IENERGY | 2024年 / 3卷 / 04期
关键词
Training; Markov decision processes; Decision making; Power distribution; Power system stability; Deep reinforcement learning; Stability analysis; Mathematical models; Optimization; Load flow; Operation mode adjustment; double Q network learning; region mapping; deep reinforcement learning;
D O I
10.23919/IEN.2024.0028
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Power flow adjustment is a sequential decision problem. The operator makes decisions to ensure that the power flow meets the system's operational constraints, thereby obtaining a typical operating mode power flow. However, this decision-making method relies heavily on human experience, which is inefficient when the system is complex. In addition, the results given by the current evaluation system are difficult to directly guide the intelligent power flow adjustment. In order to improve the efficiency and intelligence of power flow adjustment, this paper proposes a power flow adjustment method based on deep reinforcement learning. Combining deep reinforcement learning theory with traditional power system operation mode analysis, the concept of region mapping is proposed to describe the adjustment process, so as to analyze the process of power flow calculation and manual adjustment. Considering the characteristics of power flow adjustment, a Markov decision process model suitable for power flow adjustment is constructed. On this basis, a double Q network learning method suitable for power flow adjustment is proposed. This method can adjust the power flow according to the set adjustment route, thus improving the intelligent level of power flow adjustment. The method in this paper is tested on China Electric Power Research Institute (CEPRI) test system.
引用
收藏
页码:252 / 260
页数:9
相关论文
共 50 条
  • [1] Power System Operation Mode Calculation Based on Improved Deep Reinforcement Learning
    Yu, Ziyang
    Zhou, Bowen
    Yang, Dongsheng
    Wu, Weirong
    Lv, Chen
    Cui, Yong
    MATHEMATICS, 2024, 12 (01)
  • [2] Deep Reinforcement Learning-Based Tie-Line Power Adjustment Method for Power System Operation State Calculation
    Xu, Huating
    Yu, Zhihong
    Zheng, Qingping
    Hou, Jinxiu
    Wei, Yawei
    Zhang, Zhijian
    IEEE ACCESS, 2019, 7 : 156160 - 156174
  • [3] Power System Flow Adjustment and Sample Generation Based on Deep Reinforcement Learning
    Shuang Wu
    Wei Hu
    Zongxiang Lu
    Yujia Gu
    Bei Tian
    Hongqiang Li
    Journal of Modern Power Systems and Clean Energy, 2020, 8 (06) : 1115 - 1127
  • [4] Power System Flow Adjustment and Sample Generation Based on Deep Reinforcement Learning
    Wu, Shuang
    Hu, Wei
    Lu, Zongxiang
    Gu, Yujia
    Tian, Bei
    Li, Hongqiang
    JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, 2020, 8 (06) : 1115 - 1127
  • [5] Typical Power Grid Operation Mode Generation Based on Reinforcement Learning and Deep Belief Network
    Wang, Zirui
    Zhou, Bowen
    Lv, Chen
    Yang, Hongming
    Ma, Quan
    Yang, Zhao
    Cui, Yong
    SUSTAINABILITY, 2023, 15 (20)
  • [6] Power system intelligent operation knowledge learning model based on reinforcement learning and data-driven
    Zhou, Yibo
    Mu, Gang
    An, Jun
    Zhang, Liang
    FRONTIERS IN ENERGY RESEARCH, 2023, 11
  • [7] Intelligent adjustment system of indoor lighting based on deep learning
    Chen H.
    Yu C.
    Liu Z.
    Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 2022, 51 (07):
  • [8] Reactive Power Flow Convergence Adjustment Based on Deep Reinforcement Learning
    Zhang W.
    Ji B.
    He P.
    Wang N.
    Wang Y.
    Zhang M.
    Energy Engineering: Journal of the Association of Energy Engineering, 2023, 120 (09): : 2177 - 2192
  • [9] Intelligent Adapted e-Learning System based on Deep Reinforcement Learning
    El Fouki, Mohammed
    Aknin, Noura
    El Kadiri, K. Ed
    ICCWCS'17: PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON COMPUTING AND WIRELESS COMMUNICATION SYSTEMS, 2017,
  • [10] Design of intelligent system for indoor illumination adjustment based on deep learning
    Wu C.Q.
    International Journal of Industrial and Systems Engineering, 2023, 43 (02) : 137 - 152