Exploring Reasoning Biases in Large Language Models Through Syllogism: Insights from the NeuBAROCO Dataset

被引:0
|
作者
Ozeki, Kentaro [1 ,2 ]
Ando, Risako [1 ]
Morishita, Takanobu [1 ]
Abe, Hirohiko [1 ]
Mineshima, Koji [1 ]
Okada, Mitsuhiro [1 ]
机构
[1] Keio University, Tokyo, Japan
[2] University of Tokyo, Tokyo, Japan
来源
关键词
Compilation and indexing terms; Copyright 2025 Elsevier Inc;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] Exploring Reasoning Biases in Large Language Models Through Syllogism: Insights from the NeuBAROCO Dataset
    Ozeki, Kentaro
    Ando, Risako
    Morishita, Takanobu
    Abe, Hirohiko
    Mineshima, Koji
    Okada, Mitsuhiro
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: ACL 2024, 2024, : 16063 - 16077
  • [2] Evaluating Large Language Models with NeuBAROCO: Syllogistic Reasoning Ability and Human-like Biases
    Ando, Risako
    Morishita, Takanobu
    Abe, Hirohiko
    Mineshima, Koji
    Okada, Mitsuhiro
    arXiv, 2023,
  • [3] Exploring Reasoning Schemes: A Dataset for Syllogism Figure Identification
    Peng, Shiya
    Liu, Lu
    Liu, Chang
    Yu, Dong
    CHINESE LEXICAL SEMANTICS (CLSW 2020), 2021, 12278 : 445 - 451
  • [4] Exploring Reversal Mathematical Reasoning Ability for Large Language Models
    Guo, Pei
    You, Wangjie
    Li, Juntao
    Yan, Bowen
    Zhang, Min
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: ACL 2024, 2024, : 13671 - 13685
  • [5] CR-LLM: A Dataset and Optimization for Concept Reasoning of Large Language Models
    Li, Nianqi
    Liu, Jingping
    Jiang, Sihang
    Jiang, Haiyun
    Xiao, Yanghua
    Liang, Jiaqing
    Liang, Zujie
    Wei, Feng
    Chen, Jinglei
    Hao, Zhenghong
    Han, Bing
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: ACL 2024, 2024, : 13737 - 13747
  • [6] Unveiling Selection Biases: Exploring Order and Token Sensitivity in Large Language Models
    Wei, Sheng-Lun
    Wu, Cheng-Kuang
    Huang, Hen-Hsen
    Chen, Hsin-Hsi
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: ACL 2024, 2024, : 5598 - 5621
  • [7] MenatQA: A New Dataset for Testing the Temporal Comprehension and Reasoning Abilities of Large Language Models
    Wei, Yifan
    Su, Yisong
    Ma, Huanhuan
    Yu, Xiaoyan
    Lei, Fangyu
    Zhang, Yuanzhe
    Zhao, Jun
    Liu, Kang
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS - EMNLP 2023, 2023, : 1434 - 1447
  • [8] INDIAN-BHED: A Dataset for Measuring India-Centric Biases in Large Language Models
    Khandelwal, Khyati
    Tonneau, Manuel
    Bean, Andrew M.
    Kirk, Hannah Rose
    Hale, Scott A.
    PROCEEDINGS OF THE 2024 INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY FOR SOCIAL GOOD, GOODIT 2024, 2024, : 231 - 239
  • [9] Reasoning in Large Language Models Through Symbolic Math Word Problems
    Gaur, Vedant
    Saunshi, Nikunj
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL 2023, 2023, : 5889 - 5903
  • [10] Large Language Models Are Reasoning Teachers
    Ho, Namgyu
    Schmid, Laura
    Yun, Se-Young
    PROCEEDINGS OF THE 61ST ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2023): LONG PAPERS, VOL 1, 2023, : 14852 - 14882