Preparation and properties of Ta fiber reinforced high-entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)B2-SiC composite ceramics

被引:1
|
作者
Guo, Qilong [1 ,2 ]
Ying, Hao [1 ]
Yuan, Bowen [1 ]
Fan, Hengzhong [3 ]
Hua, Liang [2 ]
Liu, Ronghao [2 ]
Wang, Jing [1 ,2 ]
机构
[1] Northwest Minzu Univ, Sch Civil Engn, Lanzhou 730124, Gansu, Peoples R China
[2] Key Lab New Bldg Mat & Bldg Energy Efficiency Gans, Lanzhou 730124, Gansu, Peoples R China
[3] Chinese Acad Sci, Lanzhou Inst Chem Phys, State Key Lab Solid Lubricat, Lanzhou 730000, Gansu, Peoples R China
基金
中国国家自然科学基金;
关键词
High-entropy boride; Boron/carbon thermal reduction method; Ta fiber; Mechanical properties; Antioxidant properties; MECHANICAL-PROPERTIES; OXIDATION RESISTANCE; MICROSTRUCTURE; NB;
D O I
10.1016/j.ceramint.2024.09.266
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
High-entropy boride ceramics are expected to be widely used in aerospace, automotive turbines, and armor protection due to their advantages of high melting point, high hardness, adjustable performance, hightemperature stability, and good oxidation resistance. However, it is urgent to solve the problem of low fracture toughness before application. Therefore, in this paper, a single-phase high-purity (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2) B2 powder was prepared by boron/carbon thermal reduction method using a vacuum furnace. The effects of synthesis temperature and C content on the powder were studied. Secondly, HEB ((Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)B2) powder, SiC powder, and chopped Ta fiber were mixed uniformly, and Ta fiber toughened HEB-SiC composite ceramics were prepared by spark plasma sintering (SPS). The effects of Ta fiber content on the phase composition, microstructure, mechanical properties, and oxidation resistance of the composite ceramics were investigated. The results show that with the increase in synthesis temperature, the HEB powder gradually dissolves, and the solid solution is completely formed at 1700 degrees C. As the C content increases, the oxygen content and particle size of the powder gradually decrease. Single-phase high-entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)B2 powders with high purity were prepared at 1700 degrees C for 1 h with 6 wt% C content. The addition of C will promote the boron/carbon thermal reduction method, reduce the oxygen content, and inhibit grain growth. With the increase of Ta fiber content, the density of HEB-SiC-Taf composite ceramics increased first and then decreased. The hardness gradually decreased, and the fracture toughness gradually increased. When the Ta fiber content was 7 vol%, the fracture toughness was the highest, reaching 5.12 +/- 0.39MPa & sdot;m1/2, which was nearly 45 % higher than that of the composite ceramics without Ta fiber. This is because of the synergistic toughening mechanism of metal toughening and fiber toughening, such as crack deflection, crack bridging, fiber debonding, and fiber pullout, which improves the fracture toughness of the composite ceramics. With the increase in oxidation temperature, B2O3, SiO2, Ta2O5, and various metal oxides appear on the surface of HEB-SiC-Taf composite ceramics. The oxidation depth and weight gain per unit area gradually increase. When the Ta fiber content is 5 vol%, the composite ceramics exhibit the best high temperature stability and oxidation resistance. This is due to the Ta2O5 formed by the oxidation of Ta fibers, which dissolves into the B2O3 glass phase, increasing viscosity and improving high temperature stability while reducing the oxygen diffusion rate.
引用
收藏
页码:56070 / 56085
页数:16
相关论文
共 50 条
  • [1] Preparation and properties of Ta foil toughened high entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)B2-SiC layered structure composites
    Ying, Hao
    Guo, Qilong
    Yuan, Bowen
    Fan, Hengzhong
    Yan, Wei
    Zheng, Xiande
    Zhang, Jingqing
    Wu, Jingwei
    Liu, Ronghao
    MATERIALS TODAY COMMUNICATIONS, 2025, 42
  • [2] Preparation and characterization of diboride-based high entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)B2-SiC particulate composites
    Shen, Xiao-Qin
    Liu, Ji-Xuan
    Li, Fei
    Zhang, Guo-Jun
    CERAMICS INTERNATIONAL, 2019, 45 (18) : 24508 - 24514
  • [3] Microstructures and mechanical properties of high-entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C ceramics with the addition of SiC secondary phase
    Lu, Kuan
    Liu, Ji-Xuan
    Wei, Xiao-Feng
    Bao, Weichao
    Wu, Yue
    Li, Fei
    Xu, Fangfang
    Zhang, Guo-Jun
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2020, 40 (05) : 1839 - 1847
  • [4] Textured and toughened high-entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C-SiCw ceramics
    Luo, Si-Chun
    Guo, Wei-Ming
    Zhou, Yu-Zhang
    Plucknett, Kevin
    Lin, Hua-Tay
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2021, 94 : 99 - 103
  • [5] Textured and toughened high-entropy(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C-SiCw ceramics
    Si-Chun Luo
    Wei-Ming Guo
    Yu-Zhang Zhou
    Kevin Plucknett
    Hua-Tay Lin
    JournalofMaterialsScience&Technology, 2021, 94 (35) : 99 - 103
  • [6] Electromagnetic wave absorbing properties of TMCs(TM=Ti, Zr, Hf, Nb and Ta) and high entropy(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C
    Yanchun Zhou
    Biao Zhao
    Heng Chen
    Huimin Xiang
    Fu-Zi Dai
    Shijiang Wu
    Wei Xu
    JournalofMaterialsScience&Technology, 2021, 74 (15) : 105 - 118
  • [7] Electromagnetic wave absorbing properties of TMCs (TM=Ti, Zr, Hf, Nb and Ta) and high entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C
    Zhou, Yanchun
    Zhao, Biao
    Chen, Heng
    Xiang, Huimin
    Dai, Fu-Zi
    Wu, Shijiang
    Xu, Wei
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2021, 74 : 105 - 118
  • [8] Effect of SiC on densification, microstructure and mechanical properties of high entropy diboride (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)B2
    Kombamuthu, Vasanthakumar
    Unsal, Hakan
    Chlup, Zdenek
    Tatarkova, Monika
    Kovalcikova, Alexandra
    Zhukova, Inga
    Hosseini, Naser
    Hicak, Michal
    Dlouhy, Ivo
    Tatarko, Peter
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2024, 44 (09) : 5358 - 5369
  • [9] Preparation of (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C high-entropy ceramic nanopowders via liquid-phase precursor
    Xie, Chenyi
    Miao, Huaming
    Wan, Fan
    Wang, Yanfei
    Li, Duan
    Liu, Rongjun
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2024, 107 (07) : 5105 - 5114
  • [10] Improved damage tolerance and oxidation resistance of (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)B2-SiC by introducing chopped carbon fibers
    Huang, Feilong
    Wang, Hailong
    Fang, Cheng
    Li, Mingliang
    Shao, Gang
    Zhu, Jinpeng
    Zhou, Yanchun
    JOURNAL OF ADVANCED CERAMICS, 2024, 13 (01): : 101 - 112