Spin fluctuations in the dissipative phase transitions of the quantum Rabi model

被引:2
|
作者
Li, Jiahui [1 ,2 ,3 ]
Fazio, Rosario [4 ,5 ]
Wang, Yingdan [6 ,7 ]
Chesi, Stefano [3 ,8 ]
机构
[1] Henan Univ, Sch Quantum Informat Future Technol, Zhengzhou 450046, Peoples R China
[2] Henan Univ, Henan Key Lab Quantum Mat & Quantum Energy, Zhengzhou 450046, Peoples R China
[3] Beijing Computat Sci Res Ctr, Beijing 100193, Peoples R China
[4] Abdus Salam Int Ctr Theoret Phys ICTP, Str Costiera 11, I-34151 Trieste, Italy
[5] Univ Napoli Federico II, Dipartimento Fis, I-80126 Naples, Italy
[6] Chinese Acad Sci, Inst Theoret Phys, Beijing 100190, Peoples R China
[7] Univ Chinese Acad Sci, Sch Phys Sci, Beijing 100049, Peoples R China
[8] Beijing Normal Univ, Dept Phys, Beijing 100875, Peoples R China
来源
PHYSICAL REVIEW RESEARCH | 2024年 / 6卷 / 04期
基金
欧洲研究理事会; 中国国家自然科学基金;
关键词
!text type='PYTHON']PYTHON[!/text] FRAMEWORK; DYNAMICS; QUTIP; ATOMS;
D O I
10.1103/PhysRevResearch.6.043250
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the dissipative phase transitions of the anisotropic quantum Rabi model with cavity decay and demonstrate that large spin fluctuations persist in the stationary state, having important consequences on the phase diagram and the critical properties. In the second-order phase transition to the superradiant phase, there is a significant suppression of the order parameter and the appearance of nonuniversal factors, which directly reflect the spin populations. Furthermore, upon entering a parameter regime where mean-field theory predicts a tricritical phase, we find a first-order phase transition due to the unexpected collapse of superradiance. An accurate and physically transparent description going beyond mean-field theory is established by combining exact numerical simulations, the cumulant expansion, and analytical approximations based on reduced master equations and an effective equilibrium theory. Our findings, compared to the conventional thermodynamic limit of the Dicke model, indicate a general tendency of forming extreme nonequilibrium states in the single-spin system, thus have broad implications for dissipative phase transitions of few-body systems.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Multicritical dissipative phase transitions in the anisotropic open quantum Rabi model
    Lyu, Guitao
    Kottmann, Korbinian
    Plenio, Martin B.
    Hwang, Myung-Joong
    PHYSICAL REVIEW RESEARCH, 2024, 6 (03):
  • [2] Dissipative quantum phase transitions of light in a generalized Jaynes-Cummings-Rabi model
    Gutierrez-Jauregui, R.
    Carmichael, H. J.
    PHYSICAL REVIEW A, 2018, 98 (02)
  • [3] Dissipative phase transition in the open quantum Rabi model
    Hwang, Myung-Joong
    Rabl, Peter
    Plenio, Martin B.
    PHYSICAL REVIEW A, 2018, 97 (01)
  • [4] Quantum spin fluctuations in dynamical quantum phase transitions
    Wong, Cheuk Yiu
    Cheraghi, Hadi
    Yu, Wing Chi
    PHYSICAL REVIEW B, 2023, 108 (06)
  • [5] Ultrastrongly dissipative quantum Rabi model
    Zueco, David
    Garcia-Ripoll, Juanjo
    PHYSICAL REVIEW A, 2019, 99 (01)
  • [6] Dissipative entanglement of quantum spin fluctuations
    Benatti, F.
    Carollo, F.
    Floreanini, R.
    JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (06)
  • [7] Quantum dynamics of the driven and dissipative Rabi model
    Henriet, Loic
    Ristivojevic, Zoran
    Orth, Peter P.
    Le Hur, Karyn
    PHYSICAL REVIEW A, 2014, 90 (02)
  • [8] Phase transitions in dissipative quantum transport and mesoscopic nuclear spin pumping
    Rudner, M. S.
    Levitov, L. S.
    PHYSICAL REVIEW B, 2010, 82 (15):
  • [9] Implication of giant photon bunching on quantum phase transition in the dissipative anisotropic quantum Rabi model
    Ye, Tian
    Wang, Chen
    Chen, Qing-Hu
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2023, 609
  • [10] Quantum Phase Transitions for an Integrable Quantum Rabi-like Model with Two Interacting Qubits
    Grimaudo, R.
    Magalhaes de Castro, A. S.
    Messina, A.
    Solano, E.
    Valenti, D.
    PHYSICAL REVIEW LETTERS, 2023, 130 (04)