A SHORT REVIEW ON NOVEL APPROACHES FOR MAXIMUM CLIQUE PROBLEM: FROM CLASSICAL ALGORITHMS TO GRAPH NEURAL NETWORKS AND QUANTUM ALGORITHMS

被引:0
|
作者
Marino, Raffaele [1 ]
Buffoni, Lorenzo [1 ]
Zavalnij, Bogdan [2 ]
机构
[1] Dipartimento di Fisica e Astronomia, Università degli studi di Firenze, Via Giovanni Sansone 1, Sesto Fiorentino, Florence,50019, Italy
[2] HUN-REN, Rényi Institute of Mathematics, Reáltanoda u., 13-15, Budapest,H-1053, Hungary
来源
关键词
Graph neural networks - Graph theory - Well testing;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 22 条
  • [1] Graph Neural Networks Inspired by Classical Iterative Algorithms
    Yang, Yongyi
    Liu, Tang
    Wang, Yangkun
    Zhou, Jinjing
    Gan, Quan
    Wei, Zhewei
    Zhang, Zheng
    Huang, Zengfeng
    Wipf, David
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [2] The Graph Coloring Problem-Review of Algorithms & Neural Networks and a New Proposal
    Ansari, Mohd. Samar
    2013 INTERNATIONAL CONFERENCE ON MULTIMEDIA, SIGNAL PROCESSING AND COMMUNICATION TECHNOLOGIES (IMPACT), 2013, : 310 - 314
  • [3] Capturing Symmetries of Quantum Optimization Algorithms Using Graph Neural Networks
    Deshpande, Ajinkya
    Melnikov, Alexey
    SYMMETRY-BASEL, 2022, 14 (12):
  • [4] Classical and quantum algorithms for constructing text from dictionary problem
    Khadiev, Kamil
    Remidovskii, Vladislav
    NATURAL COMPUTING, 2021, 20 (04) : 713 - 724
  • [5] Classical and quantum algorithms for constructing text from dictionary problem
    Kamil Khadiev
    Vladislav Remidovskii
    Natural Computing, 2021, 20 : 713 - 724
  • [6] Novel Maximum-Margin Training Algorithms for Supervised Neural Networks
    Ludwig, Oswaldo
    Nunes, Urbano
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2010, 21 (06): : 972 - 984
  • [7] Computing Graph Neural Networks: A Survey from Algorithms to Accelerators
    Abadal, Sergi
    Jain, Akshay
    Guirado, Robert
    Lopez-Alonso, Jorge
    Alarcon, Eduard
    ACM COMPUTING SURVEYS, 2022, 54 (09)
  • [8] Modern graph neural networks do worse than classical greedy algorithms in solving combinatorial optimization problems like maximum independent set
    Angelini, Maria Chiara
    Ricci-Tersenghi, Federico
    NATURE MACHINE INTELLIGENCE, 2023, 5 (01) : 29 - 31
  • [9] Modern graph neural networks do worse than classical greedy algorithms in solving combinatorial optimization problems like maximum independent set
    Maria Chiara Angelini
    Federico Ricci-Tersenghi
    Nature Machine Intelligence, 2023, 5 : 29 - 31
  • [10] Ground-state statistics from annealing algorithms: quantum versus classical approaches
    Matsuda, Yoshiki
    Nishimori, Hidetoshi
    Katzgraber, Helmut G.
    NEW JOURNAL OF PHYSICS, 2009, 11