Multi-Channel Electrical Discharge Machining of Ti-6Al-4V Enabled by Semiconductor Potential Differences

被引:0
|
作者
Zhu, Xuyang [1 ]
Wei, Tao [1 ]
Li, Sipei [2 ]
Li, Guangxian [3 ]
Ding, Songlin [1 ]
机构
[1] RMIT Univ, Sch Engn, Melbourne, Vic 3083, Australia
[2] Monash Univ, Fac Educ, Melbourne, Vic 3800, Australia
[3] Guangxi Univ, Sch Mech Engn, Nanning 530004, Peoples R China
基金
澳大利亚研究理事会;
关键词
silicon; electrodes; electric discharge machining; EDM; multi-channel; potential differentials; SURFACE CHARACTERISTICS; EDM; ALLOY; PERFORMANCE; FLUID; TOOLS;
D O I
10.3390/mi16020147
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Titanium alloys are difficult to machine using conventional metal cutting methods due to their low thermal conductivity and high chemical reactivity. This study explores the new multi-channel discharge machining of Ti-6Al-4V using silicon electrodes, leveraging their internal resistivity to generate potential differences for multi-channel discharges. To investigate the underlying machining mechanism, the equivalent circuit model was developed and a theoretical simulation was carried out. Comparative experiments with silicon and conventional copper electrodes under identical parameters were also conducted to analyze discharge waveforms, material removal rate, surface quality, and heat-affected zones (HAZ). The results demonstrate that the bulk resistance of silicon is the main mechanism for generating multi-channel discharges. This process efficiently disperses the discharge energy of the single discharge pulse, resulting in smaller craters, smoother machined surfaces, and shallower recast layers and HAZ.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Electrical discharge machining of titanium alloy (Ti-6Al-4V)
    Hascalik, Ahmet
    Caydas, Ula
    APPLIED SURFACE SCIENCE, 2007, 253 (22) : 9007 - 9016
  • [2] Surface Integrity in Electrical Discharge Machining of Ti-6Al-4V
    Yu, Jianwu
    Xiao, Peng
    Liao, Yushan
    Cheng, Min
    ADVANCES IN ABRASIVE TECHNOLOGY XII, 2009, 76-78 : 613 - +
  • [3] Ultrasonic Assisted Electrical Discharge Machining of Ti-6Al-4V Alloy
    Shabgard, M. R.
    Alenabi, H.
    MATERIALS AND MANUFACTURING PROCESSES, 2015, 30 (08) : 991 - 1000
  • [4] Small electrical discharge machining of Ti-6Al-4V alloy with rotating electrode
    Yan, Biing Hwa
    Liu, Hong Song
    Keikinzoku/Journal of Japan Institute of Light Metals, 1993, 43 (04): : 225 - 229
  • [5] MICRO WIRE ELECTRICAL DISCHARGE MACHINING OF TITANIUM ALLOY Ti-6Al-4V
    Kopytowski, Adrian
    Oniszczuk-Swiercz, Dorota
    Swiercz, Rafal
    Nowicki, Rafal
    Chmielewski, Tomasz
    Salacinski, Tadeusz
    28TH INTERNATIONAL CONFERENCE ON METALLURGY AND MATERIALS (METAL 2019), 2019, : 1560 - 1565
  • [6] Ti-6Al-4V Surfaces in SiC Powder Mixed Electrical Discharge Machining
    Yasar, Hamidullah
    Ekmekci, Bulent
    MATERIAL SCIENCE AND ENGINEERING TECHNOLOGY II, 2014, 856 : 226 - 230
  • [7] Powder Mixed Electrical Discharge Machining of Titanium Alloy (Ti-6Al-4V)
    Tang, Lin
    Guo, Yongfeng
    Wang, Muxi
    Hou, Pengju
    Ma, Xinlei
    TI-2011: PROCEEDINGS OF THE 12TH WORLD CONFERENCE ON TITANIUM, VOL II, 2012, : 1621 - 1623
  • [8] Influence of process variables in the abrasive mixed electrical discharge machining of Ti-6Al-4V
    Shard, Abhinav
    Vinayak, Karan Singh
    Deepshikha
    MATERIALS TODAY-PROCEEDINGS, 2022, 59 : 107 - 114
  • [9] Surface integrity of Ti-6Al-4V alloy in hybrid electrical discharge machining processes
    Khosrozadeh, Behnam
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART E-JOURNAL OF PROCESS MECHANICAL ENGINEERING, 2024, 238 (05) : 2258 - 2267
  • [10] Influence of input parameters on the electrical discharge machining of titanium alloy (TI-6AL-4V)
    Santos, Irapuan
    Polli, Milton Luiz
    Hioki, Daniel
    International Journal of Manufacturing Research, 2015, 10 (03) : 286 - 298