Colorful Diffuse Intrinsic Image Decomposition in the Wild

被引:0
|
作者
Careaga, Chris [1 ]
Aksoy, Yagiz [1 ]
机构
[1] Simon Fraser Univ, Burnaby, BC, Canada
来源
ACM TRANSACTIONS ON GRAPHICS | 2024年 / 43卷 / 06期
基金
加拿大自然科学与工程研究理事会;
关键词
intrinsic decomposition; inverse rendering; mid-level vision; shading and reflectance estimation; image manipulation;
D O I
10.1145/3687984
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Intrinsic image decomposition aims to separate the surface reflectance and the effects from the illumination given a single photograph. Due to the complexity of the problem, most prior works assume a single-color illumination and a Lambertian world, which limits their use in illumination-aware image editing applications. In this work, we separate an input image into its diffuse albedo, colorful diffuse shading, and specular residual components. We arrive at our result by gradually removing first the single-color illumination and then the Lambertian-world assumptions. We show that by dividing the problem into easier sub-problems, in-the-wild colorful diffuse shading estimation can be achieved despite the limited ground-truth datasets. Our extended intrinsic model enables illumination-aware analysis of photographs and can be used for image editing applications such as specularity removal and per-pixel white balancing.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Single Image Intrinsic Decomposition Without a Single Intrinsic Image
    Ma, Wei-Chiu
    Chu, Hang
    Zhou, Bolei
    Urtasun, Raquel
    Torralba, Antonio
    COMPUTER VISION - ECCV 2018, PT XIV, 2018, 11218 : 211 - 229
  • [2] A Review of Intrinsic Image Decomposition
    Liu, Siyuan
    Jiang, Xiaoyue
    Liu, Letian
    Xia, Zhaoqiang
    Dang, Sihang
    Feng, Xiaoyi
    2024 3RD INTERNATIONAL CONFERENCE ON IMAGE PROCESSING AND MEDIA COMPUTING, ICIPMC 2024, 2024, : 254 - 261
  • [3] Intrinsic Image Decomposition Using Paradigms
    Forsyth, David
    Rock, Jason J.
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (11) : 7624 - 7637
  • [4] Intrinsic Image Decomposition: A Comprehensive Review
    Ma, Yupeng
    Feng, Xiaoyi
    Jiang, Xiaoyue
    Xia, Zhaoqiang
    Peng, Jinye
    IMAGE AND GRAPHICS (ICIG 2017), PT I, 2017, 10666 : 626 - 638
  • [5] IDTransformer: Transformer for Intrinsic Image Decomposition
    Das, Partha
    Gevers, Maxime
    Karaoglu, Sezer
    Gevers, Theo
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS, ICCVW, 2023, : 816 - 825
  • [6] Pansharpening Based on Intrinsic Image Decomposition
    Kang X.
    Li S.
    Fang L.
    Benediktsson J.A.
    Sensing and Imaging, 2014, 15 (01):
  • [7] Handling Specularity in Intrinsic Image Decomposition
    Muhammad, Siraj
    Dailey, Matthew N.
    Sato, Imari
    Majeed, Muhammad F.
    IMAGE ANALYSIS AND RECOGNITION (ICIAR 2018), 2018, 10882 : 107 - 115
  • [8] Bayesian Nonparametric Intrinsic Image Decomposition
    Chang, Jason
    Cabezas, Randi
    Fisher, John W., III
    COMPUTER VISION - ECCV 2014, PT IV, 2014, 8692 : 704 - 719
  • [9] Fabric image recolorization based on intrinsic image decomposition
    Xu, Chen
    Han, Yu
    Baciu, George
    Li, Min
    TEXTILE RESEARCH JOURNAL, 2019, 89 (17) : 3617 - 3631
  • [10] ENHANCED RESIDUAL DENSE INTRINSIC NETWORK FOR INTRINSIC IMAGE DECOMPOSITION
    Liu, Risheng
    Yang, Cheng
    Ma, Long
    Zhang, Miao
    Fan, Xin
    Luo, Zhongxuan
    2019 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2019, : 1462 - 1467