A Review of Data-Driven Intelligent Monitoring for Geological Drilling Processes

被引:0
|
作者
Du, Sheng [1 ,2 ,3 ,4 ]
Huang, Cheng [1 ,3 ,4 ]
Ma, Xian [2 ,3 ,4 ]
Fan, Haipeng [2 ,3 ,4 ]
机构
[1] China Univ Geosci, Sch Future Technol, Wuhan 430074, Peoples R China
[2] China Univ Geosci, Sch Automat, Wuhan 430074, Peoples R China
[3] Hubei Key Lab Adv Control & Intelligent Automat Co, Wuhan 430074, Peoples R China
[4] Minist Educ, Engn Res Ctr Intelligent Technol Geoexplorat, Wuhan 430074, Peoples R China
基金
中国博士后科学基金;
关键词
geological drilling process; intelligent monitoring; multivariate statistics; machine learning; multi-model fusion; FEATURE-EXTRACTION; ANOMALY DETECTION; LEARNING APPROACH; MODEL;
D O I
10.3390/pr12112478
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The exploration and development of resources and energy are fundamental to human survival and development, and geological drilling is a key method for deep resource and energy exploration. Intelligent monitoring technology can achieve anomaly detection, fault diagnosis, and fault prediction in the drilling process, which is crucial for ensuring production safety and improving drilling efficiency. The drilling process is characterized by complex geological conditions, variable working conditions, and low information value density, which pose a series of difficulties and challenges for intelligent monitoring. This paper reviews the research progress of the data-driven intelligent monitoring of geological drilling processes, focusing on the above difficulties and challenges. It mainly includes multivariate statistics, machine learning, and multi-model fusion. Multivariate statistical methods can effectively handle and analyze complex geological drilling data, while machine learning methods can efficiently extract key patterns and trends from a large amount of geological drilling data. Multi-model fusion methods, by combining the advantages of the first two methods, enhance the ability to handle complex multivariable and nonlinear problems. This review shows that existing research still faces problems such as limited data processing capabilities and insufficient model generalization capabilities. Improving the efficiency of data processing and the generalization capability of models may be the main research directions in the future.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Data-driven monitoring of multimode continuous processes: A review
    Quinones-Grueiro, Marcos
    Prieto-Moreno, Alberto
    Verde, Cristina
    Llanes-Santiago, Orestes
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2019, 189 : 56 - 71
  • [2] Intelligent data-driven monitoring of high dimensional multistage manufacturing processes
    Amini M.
    Chang S.I.
    International Journal of Mechatronics and Manufacturing Systems, 2020, 13 (04): : 299 - 322
  • [3] Research on intelligent tool condition monitoring based on data-driven: a review
    Cheng, Yaonan
    Guan, Rui
    Jin, Yingbo
    Gai, Xiaoyu
    Lu, Mengda
    Ding, Ya
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2023, 37 (07) : 3721 - 3738
  • [4] Research on intelligent tool condition monitoring based on data-driven: a review
    Yaonan Cheng
    Rui Guan
    Yingbo Jin
    Xiaoyu Gai
    Mengda Lu
    Ya Ding
    Journal of Mechanical Science and Technology, 2023, 37 : 3721 - 3738
  • [5] Drilling performance monitoring and optimization: a data-driven approach
    Shan e Zehra Lashari
    Ali Takbiri-Borujeni
    Ebrahim Fathi
    Ting Sun
    Reza Rahmani
    Mehdi Khazaeli
    Journal of Petroleum Exploration and Production Technology, 2019, 9 : 2747 - 2756
  • [6] Drilling performance monitoring and optimization: a data-driven approach
    Lashari, Shan e Zehra
    Takbiri-Borujeni, Ali
    Fathi, Ebrahim
    Sun, Ting
    Rahmani, Reza
    Khazaeli, Mehdi
    JOURNAL OF PETROLEUM EXPLORATION AND PRODUCTION TECHNOLOGY, 2019, 9 (04) : 2747 - 2756
  • [7] Review on data-driven modeling and monitoring for plant-wide industrial processes
    Ge, Zhiqiang
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2017, 171 : 16 - 25
  • [8] Data-Driven Model Predictive Monitoring for Dynamic Processes
    Jiang, Qingchao
    Yi, Huaikuan
    Yan, Xuefeng
    Zhang, Xinmin
    Huang, Jian
    IFAC PAPERSONLINE, 2020, 53 (02): : 105 - 110
  • [9] Intelligent Monitoring Framework for Cloud Services: A Data-Driven Approach
    Srinivas, Pooja
    Husain, Fiza
    Parayil, Anjaly
    Choure, Ayush
    Bansal, Chetan
    Rajmohan, Saravan
    2024 ACM/IEEE 44TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING: SOFTWARE ENGINEERING IN PRACTICE, ICSE-SEIP 2024, 2024, : 381 - 391
  • [10] Data-driven methodology for energy consumption prediction of turning and drilling processes
    Lyu J.
    Tang R.
    Zheng J.
    1600, CIMS (26): : 2073 - 2082