Materials for Connecting Solid Oxide Fuel Cells (Overview)

被引:0
|
作者
Brodnikovskyi, D. M. [1 ]
机构
[1] Natl Acad Sci Ukraine, Frantsevich Inst Problems Mat Sci, Kyiv, Ukraine
关键词
solid oxide fuel cell interconnects; structural materials; chromium steels; titanium-based materials; METALLIC INTERCONNECTS; THERMAL-EXPANSION; SOFC; ALLOYS; CARBON;
D O I
10.1007/s11106-025-00450-y
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Solid oxide fuel cells (SOFCs) are among the most promising energy-generating devices, offering high efficiency, environmental friendliness, and flexibility to use a wide range of fuels. The main components of an SOFC are an electrolyte, an anode, a cathode, and a connector (interconnect). The operating principle of SOFCs is as follows. Oxygen is supplied to the cathode, where it is reduced. Oxygen ions move through a dense ceramic electrolyte (ionic conductor) from the cathode to the anode. Meanwhile, hydrogen is supplied to the anode, where a catalyst (metallic nickel) promotes its dissociation into atoms. When hydrogen is oxidized, it releases electrons into the external electric circuit, forming water in the process. The water formation reaction is exothermic. As a result, a constant electric current flows through the external electric circuit, enabling the direct conversion of chemical energy into electrical energy. The interconnect is a component that connects individual fuel cells into a power system - an SOFC stack. A brief overview of materials for ceramic fuel cell connectors (interconnects) and areas for improving their properties are provided. The classification of ceramic (lanthanum chromite LaCrO3) and metallic (chromium-based alloys, nickel-chromium alloys, and ferritic stainless steels) interconnect materials is presented. Ceramic interconnects are commonly used for high-temperature SOFCs (similar to 1000 degrees C). The disadvantages of these materials include the difficulty of manufacturing interconnects with complex shapes and their high cost, resulting from the use of rare-earth elements. Among metallic materials, ferritic stainless steels with high chromium content (Crofer 22 APU and Crofer 22) are the most promising in terms of key performance indicators. The main shortcomings of modern chromium-based steel materials for interconnects in SOFC energy systems and the principles for changing the development paradigm for advanced lightweight materials with improved properties are outlined. The replacement of chromium steels with promising titanium-based composites is proposed.
引用
收藏
页码:184 / 193
页数:10
相关论文
共 50 条
  • [1] Materials and Components for Low Temperature Solid Oxide Fuel Cells - an Overview
    Radhika, D.
    INTERNATIONAL JOURNAL OF RENEWABLE ENERGY DEVELOPMENT-IJRED, 2013, 2 (02): : 87 - 95
  • [2] Materials for Solid Oxide Fuel Cells
    Jacobson, Allan J.
    CHEMISTRY OF MATERIALS, 2010, 22 (03) : 660 - 674
  • [3] Control of Solid Oxide Fuel Cells: An Overview
    Leung, Marvin
    Park, Gunhyung
    Radisavljevic-Gajic, Verica
    2013 9TH ASIAN CONTROL CONFERENCE (ASCC), 2013,
  • [4] Solid oxide fuel cells: An overview.
    Singhal, SC
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2004, 228 : U653 - U653
  • [5] Oxide anode materials for solid oxide fuel cells
    Fergus, Jeffrey W.
    SOLID STATE IONICS, 2006, 177 (17-18) : 1529 - 1541
  • [6] Metallic materials in solid oxide fuel cells
    Shemet, V
    Piron-Abellan, J
    Quadakkers, WJ
    Singheiser, L
    FUEL CELL TECHNOLOGIES: STATE AND PERSPECTIVES, 2005, 202 : 97 - 106
  • [7] Solid oxide fuel cells: Materials and technology
    Armstrong, TR
    Stevenson, JW
    IECEC 96 - PROCEEDINGS OF THE 31ST INTERSOCIETY ENERGY CONVERSION ENGINEERING CONFERENCE, VOLS 1-4, 1996, : 1095 - 1100
  • [8] Materials selection for solid oxide fuel cells
    Tietz, F
    THERMEC'2003, PTS 1-5, 2003, 426-4 : 4465 - 4470
  • [9] Solid oxide fuel cells: Systems and materials
    Gauckler, LJ
    Beckel, D
    Buergler, BE
    Jud, E
    Muecke, UR
    Prestat, M
    Rupp, JLM
    Richter, J
    CHIMIA, 2004, 58 (12) : 837 - 850
  • [10] Modeling of Solid Oxide Fuel Cells (SOFCs): An Overview
    Lee, Michael
    Park, Gunhyung
    Radisavljevic-Gajic, Verica
    2013 5TH INTERNATIONAL CONFERENCE ON MODELING, SIMULATION AND APPLIED OPTIMIZATION (ICMSAO), 2013,