A Novel Long Short-Term Memory Seq2Seq Model with Chaos-Based Optimization and Attention Mechanism for Enhanced Dam Deformation Prediction

被引:1
|
作者
Wang, Lei [1 ]
Wang, Jiajun [1 ]
Tong, Dawei [1 ]
Wang, Xiaoling [1 ]
机构
[1] Tianjin Univ, State Key Lab Hydraul Engn Intelligent Construct &, Tianjin 300354, Peoples R China
关键词
dam deformation prediction; long short-term memory sequence-to-sequence model; attention mechanism; arithmetic optimization algorithm; chaotic optimization; LSTM;
D O I
10.3390/buildings14113675
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The accurate prediction of dam deformation is essential for ensuring safe and efficient dam operation and risk management. However, the nonlinear relationships between deformation and time-varying environmental factors pose significant challenges, often limiting the accuracy of conventional and deep learning models. To address these issues, this study aimed to improve the predictive accuracy and interpretability in dam deformation modeling by proposing a novel LSTM seq2seq model that integrates a chaos-based arithmetic optimization algorithm (AOA) and an attention mechanism. The AOA optimizes the model's learnable parameters by utilizing the distribution patterns of four mathematical operators, further enhanced by logistic and cubic mappings, to avoid local optima. The attention mechanism, placed between the encoder and decoder networks, dynamically quantifies the impact of influencing factors on deformation, enabling the model to focus on the most relevant information. This approach was applied to an earth-rock dam, achieving superior predictive performance with RMSE, MAE, and MAPE values of 0.695 mm, 0.301 mm, and 0.156%, respectively, outperforming conventional machine learning and deep learning models. The attention weights provide insights into the contributions of each factor, enhancing interpretability. This model holds potential for real-time deformation monitoring and predictive maintenance, contributing to the safety and resilience of dam infrastructure.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Research on Short-Term Load Prediction Based on Seq2seq Model
    Gong, Gangjun
    An, Xiaonan
    Mahato, Nawaraj Kumar
    Sun, Shuyan
    Chen, Si
    Wen, Yafeng
    ENERGIES, 2019, 12 (16)
  • [2] Dam Deformation Interpretation and Prediction Based on a Long Short-Term Memory Model Coupled with an Attention Mechanism
    Su, Yan
    Weng, Kailiang
    Lin, Chuan
    Chen, Zeqin
    APPLIED SCIENCES-BASEL, 2021, 11 (14):
  • [3] Short-term PM2.5 Prediction using Modified Attention Seq2Seq BiLSTM
    Utama, Ida Bagus Krishna Yoga
    Duc Hoang Tran
    Jang, Yeong Min
    2022 THIRTEENTH INTERNATIONAL CONFERENCE ON UBIQUITOUS AND FUTURE NETWORKS (ICUFN), 2022, : 462 - 465
  • [4] Spatial-temporal attention-based seq2seq framework for short-term travel time prediction
    Zhang, Ningqing
    Wang, Fei
    Chen, Xiong
    Zhao, Tong
    Kang, Qi
    INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2022, 20 (01) : 23 - 37
  • [5] Short-term power load forecasting based on Seq2Seq model integrating Bayesian optimization, temporal convolutional network and attention
    Dai, Yeming
    Yu, Weijie
    APPLIED SOFT COMPUTING, 2024, 166
  • [6] Network Penetration Intrusion Prediction Based on Attention Seq2seq Model
    Yu, Tianxiang
    Xin, Yang
    Zhu, Hongliang
    Tang, Qifeng
    Chen, Yuling
    SECURITY AND COMMUNICATION NETWORKS, 2022, 2022
  • [7] Optimized Seq2Seq model based on multiple methods for short-term power load forecasting
    Dai, Yeming
    Yang, Xinyu
    Leng, Mingming
    APPLIED SOFT COMPUTING, 2023, 142
  • [8] ST-Seq2Seq: A Spatio-Temporal Feature-Optimized Seq2Seq Model for Short-Term Vessel Trajectory Prediction
    You, Lan
    Xiao, Siyu
    Peng, Qingxi
    Claramunt, Christophe
    Han, Xuewei
    Guan, Zhengyi
    Zhang, Jiahe
    IEEE ACCESS, 2020, 8 : 218565 - 218574
  • [9] An Optimized Seq2Seq Attention Network Considering Multivariate Temporal Correlation for Short-Term Electricity Price Interval Prediction
    Wu, Hua-Yue
    Kan, Tian-Yang
    Chen, Hai-Peng
    Journal of Network Intelligence, 2024, 9 (01): : 14 - 27
  • [10] Short-term wind power forecasting approach based on Seq2Seq model using NWP data
    Zhang, Yu
    Li, Yanting
    Zhang, Guangyao
    ENERGY, 2020, 213