SSFAN: A Compact and Efficient Spectral-Spatial Feature Extraction and Attention-Based Neural Network for Hyperspectral Image Classification

被引:0
|
作者
Wang, Chunyang [1 ]
Zhan, Chao [1 ]
Lu, Bibo [1 ]
Yang, Wei [2 ]
Zhang, Yingjie [3 ]
Wang, Gaige [4 ]
Zhao, Zongze [5 ]
机构
[1] Henan Polytech Univ, Sch Comp Sci & Technol, Jiaozuo 454000, Peoples R China
[2] Chiba Univ, Ctr Environm Remote Sensing, Chiba 2638522, Japan
[3] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & Re, Luoyu Rd 129, Wuhan 430079, Peoples R China
[4] Ocean Univ China, Sch Comp Sci & Technol, Qingdao 266100, Peoples R China
[5] Henan Polytech Univ, Sch Surveying & Land Informat Engn, Jiaozuo 454000, Peoples R China
基金
日本学术振兴会;
关键词
deep learning; hyperspectral image classification; attention mechanisms; convolutional neural networks; spectral-spatial learning; loss function; AGRICULTURE;
D O I
10.3390/rs16224202
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Hyperspectral image (HSI) classification is a crucial technique that assigns each pixel in an image to a specific land cover category by leveraging both spectral and spatial information. In recent years, HSI classification methods based on convolutional neural networks (CNNs) and Transformers have significantly improved performance due to their strong feature extraction capabilities. However, these improvements often come with increased model complexity, leading to higher computational costs. To address this, we propose a compact and efficient spectral-spatial feature extraction and attention-based neural network (SSFAN) for HSI classification. The SSFAN model consists of three core modules: the Parallel Spectral-Spatial Feature Extraction Block (PSSB), the Scan Block, and the Squeeze-and-Excitation MLP Block (SEMB). After preprocessing the HSI data, it is fed into the PSSB module, which contains two parallel streams, each comprising a 3D convolutional layer and a 2D convolutional layer. The 3D convolutional layer extracts spectral and spatial features from the input hyperspectral data, while the 2D convolutional layer further enhances the spatial feature representation. Next, the Scan Block module employs a layered scanning strategy to extract spatial information at different scales from the central pixel outward, enabling the model to capture both local and global spatial relationships. The SEMB module combines the Spectral-Spatial Recurrent Block (SSRB) and the MLP Block. The SSRB, with its adaptive weight assignment mechanism in the SToken Module, flexibly handles time steps and feature dimensions, performing deep spectral and spatial feature extraction through multiple state updates. Finally, the MLP Block processes the input features through a series of linear transformations, GELU activation functions, and Dropout layers, capturing complex patterns and relationships within the data, and concludes with an argmax layer for classification. Experimental results show that the proposed SSFAN model delivers superior classification performance, outperforming the second-best method by 1.72%, 5.19%, and 1.94% in OA, AA, and Kappa coefficient, respectively, on the Indian Pines dataset. Additionally, it requires less training and testing time compared to other state-of-the-art deep learning methods.
引用
收藏
页数:32
相关论文
共 50 条
  • [1] Spectral-Spatial Attention Feature Extraction for Hyperspectral Image Classification Based on Generative Adversarial Network
    Liang, Hongbo
    Bao, Wenxing
    Shen, Xiangfei
    Zhang, Xiaowu
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 10017 - 10032
  • [2] Hyperspectral Image Classification Based on Spectral-Spatial Feature Extraction
    Ye, Zhen
    Tan, Lian
    Bai, Lin
    2017 INTERNATIONAL WORKSHOP ON REMOTE SENSING WITH INTELLIGENT PROCESSING (RSIP 2017), 2017,
  • [3] Spectral-Spatial Attention Network for Hyperspectral Image Classification
    Sun, Hao
    Zheng, Xiangtao
    Lu, Xiaoqiang
    Wu, Siyuan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (05): : 3232 - 3245
  • [4] SPECTRAL-SPATIAL FEATURE EXTRACTION BASED CNN FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Quan, Yinghui
    Dong, Shuxian
    Feng, Wei
    Dauphin, Gabriel
    Zhao, Guoping
    Wang, Yong
    Xing, Mengdao
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 485 - 488
  • [5] A Lightweight Spectral-Spatial Feature Extraction and Fusion Network for Hyperspectral Image Classification
    Chen, Linlin
    Wei, Zhihui
    Xu, Yang
    REMOTE SENSING, 2020, 12 (09)
  • [6] SPECTRAL-SPATIAL CLASSIFICATION OF HYPERSPECTRAL IMAGE BASED ON A JOINT ATTENTION NETWORK
    Pan, Erting
    Ma, Yong
    Mei, Xiaoguang
    Dai, Xiaobing
    Fan, Fan
    Tian, Xin
    Ma, Jiayi
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 413 - 416
  • [7] Hyperspectral Image Classification Based on Spectral-Spatial Attention Tensor Network
    Zhang, Wei-Tao
    Li, Yi-Bang
    Liu, Lu
    Bai, Yv
    Cui, Jian
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21 : 1 - 5
  • [8] Spectral-spatial attention bilateral network for hyperspectral image classification
    Yang X.
    Chi Y.
    Zhou Y.
    Wang Y.
    National Remote Sensing Bulletin, 2023, 27 (11) : 2565 - 2578
  • [9] Asymmetric coordinate attention spectral-spatial feature fusion network for hyperspectral image classification
    Shuli Cheng
    Liejun Wang
    Anyu Du
    Scientific Reports, 11
  • [10] Residual Spectral-Spatial Attention Network for Hyperspectral Image Classification
    Zhu, Minghao
    Jiao, Licheng
    Liu, Fang
    Yang, Shuyuan
    Wang, Jianing
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (01): : 449 - 462