THE SPARSE-GRID-BASED ADAPTIVE SPECTRAL KOOPMAN

被引:0
|
作者
Li, Bian [1 ]
Yu, Yue [2 ]
Yang, Xiu [1 ]
机构
[1] Lehigh Univ, Dept Ind & Syst Engn, Bethlehem, PA 18015 USA
[2] Lehigh Univ, Dept Math, Bethlehem, PA 18015 USA
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2024年 / 46卷 / 05期
基金
美国国家科学基金会;
关键词
dynamical systems; sparse grids; Koopman operator; partial differential equations; spectral-collocation method; DYNAMIC-MODE DECOMPOSITION; SYSTEMS; OPERATOR; INTERPOLATION;
D O I
10.1137/23M1578292
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The adaptive spectral Koopman (ASK) method was introduced to numerically solve autonomous dynamical systems that laid the foundation for numerous applications across different fields in science and engineering. Although ASK achieves high accuracy, it is computationally more expensive for multidimensional systems compared with conventional time integration schemes like Runge-Kutta. In this work, we combine the sparse grid and ASK to accelerate the computation for multidimensional systems. This sparse-grid-based ASK (SASK) method uses the Smolyak structure to construct multidimensional collocation points as well as associated polynomials that are used to approximate eigenfunctions of the Koopman operator of the system. In this way, the number of collocation points is reduced compared with using the tensor product rule. We demonstrate that SASK can be used to solve ordinary differential equations (ODEs) and partial differential equations (PDEs) based on their semidiscrete forms. Numerical experiments are illustrated to compare the performance of SASK and state-of-the-art ODE solvers.
引用
收藏
页码:A2925 / A2950
页数:26
相关论文
共 50 条
  • [1] Sparse-Grid-Based Adaptive Model Predictive Control of HL60 Cellular Differentiation
    Noble, Sarah L.
    Wendel, Lindsay E.
    Donahue, Maia M.
    Buzzard, Gregery T.
    Rundell, Ann E.
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2012, 59 (02) : 456 - 463
  • [2] Multifidelity Sparse-Grid-Based Uncertainty Quantification for the Hokkaido Nansei-oki Tsunami
    Jouke H. S. de Baar
    Stephen G. Roberts
    Pure and Applied Geophysics, 2017, 174 : 3107 - 3121
  • [3] Multifidelity Sparse-Grid-Based Uncertainty Quantification for the Hokkaido Nansei-oki Tsunami
    de Baar, Jouke H. S.
    Roberts, Stephen G.
    PURE AND APPLIED GEOPHYSICS, 2017, 174 (08) : 3107 - 3121
  • [4] A Sparse-Grid-Based Out-of-Sample Extension for Dimensionality Reduction and Clustering with Laplacian Eigenmaps
    Peherstorfer, Benjamin
    Pflueger, Dirk
    Bungartz, Hans-Joachim
    AI 2011: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2011, 7106 : 112 - 121
  • [5] Parametric Model Order Reduction by Sparse-Grid-Based Interpolation on Matrix Manifolds for Multidimensional Parameter Spaces
    Geuss, Matthias
    Butnaru, Daniel
    Peherstorfer, Benjamin
    Bungartz, Hans-Joachim
    Lohmann, Boris
    2014 EUROPEAN CONTROL CONFERENCE (ECC), 2014, : 2727 - 2732
  • [6] The Adaptive Spectral Koopman Method for Dynamical Systems*
    Li, Bian
    Ma, Yian
    Kutz, J. Nathan
    Yang, Xiu
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2023, 22 (03): : 1523 - 1551
  • [7] Shear turbulence on a sparse spectral grid
    De Lillo, F.
    Eckhardt, Bruno
    PHYSICAL REVIEW E, 2007, 76 (01):
  • [8] Adaptive sparse grid classification using grid environments
    Pflueger, Dirk
    Muntean, Ioan Lucian
    Bungartz, Hans-Joachim
    COMPUTATIONAL SCIENCE - ICCS 2007, PT 1, PROCEEDINGS, 2007, 4487 : 708 - +
  • [9] System identification based on sparse approximation of Koopman operator
    Lu, Tiantian
    Feng, Jinqian
    Su, Jin
    Han, Youpan
    Guo, Qin
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2024,
  • [10] Nonlinearity-based Adaptive Sparse-Grid Quadrature Filter
    Sun, Tao
    Xin, Ming
    Jia, Bin
    2015 AMERICAN CONTROL CONFERENCE (ACC), 2015, : 2499 - 2504