Hybrid MoS2/PEDOT:PSS Sensor for Volatile Organic Compounds Detection at Room Temperature: Experimental and DFT Insights

被引:0
|
作者
Kumar, Atul [1 ]
Tripathi, Divya [1 ]
Rawat, Ravindra Kumar [1 ]
Chauhan, Pratima [1 ]
机构
[1] Univ Allahabad, Dept Phys, Adv Nanomat Res Lab, UGC Ctr Adv Studies, Prayagraj 211002, India
关键词
TMDs; PEDOT:PSS; MoS2/PEDOT:PSS; Ethanol; Sensor; DFT; SENSING MECHANISM; GAS; NANOCOMPOSITE; NANOSHEETS; GRAPHENE; POLY(3,4-ETHYLENEDIOXYTHIOPHENE)-POLY(STYRENESULFONATE); PERFORMANCE; PEDOTPSS; CO2;
D O I
10.1021/acsanm.4c05614
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
This work emphasizes the gas sensing capabilities of MoS2/PEDOT:PSS nanohybrid-based sensors, offering a prominent candidate for detecting volatile organic compounds (VOCs) at room temperature. The MoS2/PEDOT:PSS composite material is synthesized by combining commercial PEDOT:PSS with MoS2 produced via hydrothermal synthesis using ultrasonication for mechanical mixing. Further, the pristine PEDOT:PSS, MoS2, and MoS2/PEDOT:PSS samples were extensively characterized using various techniques to obtain detailed information about their structural, compositional, and morphological properties. The study reveals that the MoS2/PEDOT:PSS composite exhibited the highest sensitivity among the tested materials with a 56.29% response at 500 ppm of ethanol. The response of the MoS2/PEDOT:PSS sensor increases from 12.24% to 56.29% as the concentration of analyte gas increases from 25 to 500 ppm. Also, repeatability-, sensitivity-, and humidity-based analyses were performed for the evaluation of the sensor. The response and recovery times of the MoS2/PEDOT:PSS nanohybrid sensor are 8.2 and 2.5 s, respectively. The repeatability analysis demonstrated stable performance across multiple tests with percent deviations of +/- 0.04 for PEDOT:PSS, +/- 0.35 for MoS2, and +/- 0.08 for MoS2/PEDOT:PSS under ambient conditions. The computational study reveals that the EDOT:SS/MoS2 (002) composite exhibits strong oxygen adsorption energies of -11.61 eV, indicating enhanced adsorption capabilities. In contrast, MoS2 (002) and PEDOT:PSS show lower energies of -9.22 and -11.08 eV, respectively. Additionally, VOC adsorption on oxygen preadsorbed EDOT:SS/MoS2 (002) shows methanol and ethanol with strong affinities, while toluene and hexane exhibit weaker interactions. These computational findings highlight and support the potential of the MoS2/PEDOT:PSS composite for gas sensing applications.
引用
收藏
页码:27599 / 27611
页数:13
相关论文
共 50 条
  • [1] Flexible Synergistic MoS2 Quantum Dots/PEDOT: PSS Film Sensor for Acetaldehyde Sensing at Room Temperature
    Jin, Ling
    Yang, Kai
    Chen, Lifan
    Yan, Ruran
    He, Lifang
    Ye, Mingfu
    Qiao, Hongbin
    Chu, Xiangfeng
    Gao, Hong
    Zhang, Kui
    ANALYTICAL CHEMISTRY, 2023, 95 (23) : 8859 - 8868
  • [2] Engineering of the interactions of volatile organic compounds with MoS2
    Tian, Xiao-Qing
    Liu, Lin
    Wang, Xiang-Rong
    Wei, Ya-Dong
    Gu, Juan
    Du, Yu
    Yakobson, Boris I.
    JOURNAL OF MATERIALS CHEMISTRY C, 2017, 5 (06) : 1463 - 1470
  • [3] Tunable Volatile Organic Compounds Sensor by Using Thiolated Ligand Conjugation on MoS2
    Kim, Jong-Seon
    Yoo, Hae-Wook
    Choi, Hyung Ouk
    Jung, Hee-Tae
    NANO LETTERS, 2014, 14 (10) : 5941 - 5947
  • [4] Polyaniline nanofibers based gas sensor for detection of volatile organic compounds at room temperature
    Kashyap, Rajesh
    Kumar, Ravi
    Kumar, Mukesh
    Tyagi, Sachin
    Kumar, Dinesh
    MATERIALS RESEARCH EXPRESS, 2019, 6 (11):
  • [5] PAAM/PEDOT:PSS HYDROGEL BASED HYBRID SENSOR FOR SIMULTANEOUS DETECTION OF PRESSURE AND TEMPERATURE
    Ko, Seokgyu
    Yoon, Hyosang
    Chhetry, Ashok
    Park, Jaeyeong
    2020 33RD IEEE INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS (MEMS 2020), 2020, : 168 - 171
  • [6] Performance Improvement of MoS2 Gas Sensor at Room Temperature
    Peng, X.
    Han, Y.
    Zhang, Q.
    Feng, P.
    Jia, P.
    Cui, H.
    Wang, L.
    Duan, S.
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2021, 68 (09) : 4644 - 4650
  • [7] Ti3C2Tx/PEDOT:PSS hybrid materials for room-temperature methanol sensor
    Wang, Xiaofeng
    Sun, Kaiming
    Li, Ke
    Li, Xu
    Gogotsi, Yury
    CHINESE CHEMICAL LETTERS, 2020, 31 (04) : 1018 - 1021
  • [8] Ti3C2Tx/PEDOT:PSS hybrid materials for room-temperature methanol sensor
    Xiaofeng Wang
    Kaiming Sun
    Ke Li
    Xu Li
    Yury Gogotsi
    ChineseChemicalLetters, 2020, 31 (04) : 1018 - 1021
  • [9] Temperature Modulation of MOS Sensors for Enhanced Detection of Volatile Organic Compounds
    Rescalli, Andrea
    Marzorati, Davide
    Gelosa, Simone
    Cellesi, Francesco
    Cerveri, Pietro
    CHEMOSENSORS, 2023, 11 (09)
  • [10] Reduced graphene oxide/MoS2 hybrid films for room-temperature formaldehyde detection
    Li, Xian
    Wang, Jing
    Xie, Dan
    Xu, Jianlong
    Xia, Yi
    Xiang, Lan
    Komarneni, Sridhar
    MATERIALS LETTERS, 2017, 189 : 42 - 45