Turnpike in Nonlinear Optimal Control Problems With Indefinite Hamiltonian

被引:0
|
作者
Lu, Yi [1 ]
Guglielmi, Roberto [2 ]
机构
[1] Univ Victoria, Dept Math & Stat, Victoria, ON V8P 5E3, Canada
[2] Univ Waterloo, Dept Math, Waterloo, ON N2L 3G1, Canada
来源
基金
加拿大自然科学与工程研究理事会;
关键词
Optimal control; Sufficient conditions; Optimization; Steady-state; Dynamical systems; Symmetric matrices; Standards; Riccati equations; Nonlinear systems; Vectors; optimization; stability of nonlinear systems; STRICT DISSIPATIVITY; STEADY-STATE; TIME; PROPERTY; SYSTEMS;
D O I
10.1109/LCSYS.2024.3509960
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We provide a sufficient condition to ensure turnpike for general nonlinear control systems. The main result of this letter exploits the connection between turnpike and the hyperbolicity of the corresponding optimality system and combines it with the theory of Algebraic Riccati Equations with indefinite source terms. We validate our sufficient condition with an example that does not satisfy previous sufficient conditions for turnpike.
引用
收藏
页码:2691 / 2696
页数:6
相关论文
共 50 条
  • [1] Turnpike solutions of optimal control problems
    Quang N.M.
    Ukhin M.Yu.
    Autom. Remote Control, 2006, 6 (880-886): : 880 - 886
  • [2] Turnpike in Lipschitz-nonlinear optimal control
    Esteve-Yague, Carlos
    Geshkovski, Borjan
    Pighin, Dario
    Zuazua, Enrique
    NONLINEARITY, 2022, 35 (04) : 1652 - 1701
  • [3] Indefinite Linear Quadratic Optimal Control: Strict Dissipativity and Turnpike Properties
    Berberich, Julian
    Koehler, Johannes
    Allgoewer, Frank
    Mueller, Matthias A.
    IEEE CONTROL SYSTEMS LETTERS, 2018, 2 (03): : 399 - 404
  • [4] Turnpike properties of optimal relaxed control problems☆
    Lou, Hongwei
    Wang, Weihan
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2019, 25
  • [5] On the turnpike property with interior decay for optimal control problems
    Gugat, Martin
    MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2021, 33 (02) : 237 - 258
  • [6] The turnpike property in nonlinear optimal control - A geometric approach
    Sakamoto, Noboru
    Pighin, Dario
    Zuazua, Enrique
    2019 IEEE 58TH CONFERENCE ON DECISION AND CONTROL (CDC), 2019, : 2422 - 2427
  • [7] On the turnpike property with interior decay for optimal control problems
    Martin Gugat
    Mathematics of Control, Signals, and Systems, 2021, 33 : 237 - 258
  • [8] Greedy optimal control for elliptic problems and its application to turnpike problems
    Víctor Hernández-Santamaría
    Martin Lazar
    Enrique Zuazua
    Numerische Mathematik, 2019, 141 : 455 - 493
  • [9] Greedy optimal control for elliptic problems and its application to turnpike problems
    Hernandez-Santamaria, Victor
    Lazar, Martin
    Zuazua, Enrique
    NUMERISCHE MATHEMATIK, 2019, 141 (02) : 455 - 493
  • [10] The turnpike property in nonlinear optimal control-A geometric approach
    Sakamoto, Noboru
    Zuazua, Enrique
    AUTOMATICA, 2021, 134