Graph Autoencoder-Based Power Attacks Detection for Resilient Electrified Transportation Systems

被引:2
|
作者
Fahim, Shahriar Rahman [1 ]
Atat, Rachad [2 ]
Kececi, Cihat [1 ]
Takiddin, Abdulrahman [3 ]
Ismail, Muhammad [4 ]
Davis, Katherine R. [1 ]
Serpedin, Erchin [1 ]
机构
[1] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA
[2] Texas A&M Univ Qatar, Dept Elect & Comp Engn, Doha, Qatar
[3] Florida State Univ, Dept Elect & Comp Engn, FAMU FSU Coll Engn, Tallahassee, FL 32310 USA
[4] Tennessee Technol Univ, Dept Comp Sci, Cookeville, TN 38505 USA
关键词
Transportation; Mathematical models; Power systems; Detectors; Power grids; Power system stability; Power measurement; Cybersecurity; electric vehicles (EVs); false data injection attacks (FDIAs); graph autoencoder (GAE); graph neural networks (GNNs); smart grids; DATA INJECTION ATTACKS; STATE ESTIMATION; CLASSIFICATION; NETWORKS;
D O I
10.1109/TTE.2024.3355094
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The interdependence of power and electrified transportation systems introduces new challenges to the reliability and resilience of charging infrastructure. With the increasing prevalence of electric vehicles (EVs), power system attacks that can lower customers charging satisfaction rates are on the rise. The existing false data injection attack (FDIA) detection strategies are not suitable for protecting the power-dependent transportation infrastructure since: 1) these detectors are primarily optimized for power grids alone and 2) they overlook the impact of attacks on the quality-of-service of EVs and charging stations (CSs). In response to these challenges, this article aims to develop an FDIA detection strategy that takes advantage of the data correlations between power and transportation systems, ultimately enhancing the charging satisfaction rate. To achieve this goal, we propose a graph autoencoder-based FDIA detection scheme capable of extracting spatiotemporal features from both power and transportation data. The input features of power systems are active and reactive power, while those for transportation systems are the hourly traffic volume in CSs. The proposed model undergoes comprehensive training and testing on various types of FDIAs, showcasing improved generalization abilities. Simulations are conducted on the 2000-bus power grid of the state of Texas, featuring 360 active CSs. Our investigations reveal an average detection rate of 98.3%, representing a substantial improvement of 15%-25% compared to state-of-the-art detectors. This underscores the effectiveness of our proposed approach in addressing the unique challenges posed by power-dependent electrified transportation systems.
引用
收藏
页码:9539 / 9553
页数:15
相关论文
共 50 条
  • [1] Evasive attacks against autoencoder-based cyberattack detection systems in power systems
    Khaw, Yew Meng
    Jahromi, Amir Abiri
    Arani, Mohammadreza F. M.
    Kundur, Deepa
    ENERGY AND AI, 2024, 17
  • [2] Graph autoencoder-based unsupervised outlier detection
    Du, Xusheng
    Yu, Jiong
    Chu, Zheng
    Jin, Lina
    Chen, Jiaying
    INFORMATION SCIENCES, 2022, 608 : 532 - 550
  • [3] Graph Autoencoder-Based Detection of Unseen False Data Injection Attacks in Smart Grids
    Takiddin, Abdulrahman
    Ismail, Muhammad
    Atat, Rachad
    Davis, Katherine R.
    Serpedin, Erchin
    INTELLIGENT SYSTEMS AND APPLICATIONS, VOL 1, INTELLISYS 2023, 2024, 822 : 234 - 244
  • [4] Training Strategies for Autoencoder-based Detection of False Data Injection Attacks
    Wang, Chenguang
    Pan, Kaikai
    Tindemans, Simon
    Palensky, Peter
    2020 IEEE PES INNOVATIVE SMART GRID TECHNOLOGIES EUROPE (ISGT-EUROPE 2020): SMART GRIDS: KEY ENABLERS OF A GREEN POWER SYSTEM, 2020, : 1 - 5
  • [5] Detection of Attacks in Network Traffic with the Autoencoder-Based Unsupervised Learning Method
    Ozkan, Yalcin
    ACTA INFOLOGICA, 2022, 6 (02):
  • [6] Fighting TLS Attacks: An Autoencoder-Based Model for Heartbleed Attack Detection
    Berbecaru, Diana Gratiela
    Giannuzzi, Stefano
    INTELLIGENT DISTRIBUTED COMPUTING XVI, IDC 2023, 2024, 1138 : 40 - 54
  • [7] Robust Graph Autoencoder-Based Detection of False Data Injection Attacks Against Data Poisoning in Smart Grids
    Takiddin A.
    Ismail M.
    Atat R.
    Davis K.R.
    Serpedin E.
    IEEE Transactions on Artificial Intelligence, 2024, 5 (03): : 1287 - 1301
  • [8] Enhancing anomaly detection in distributed power systems using autoencoder-based federated learning
    Kea, Kimleang
    Han, Youngsun
    Kim, Tae-Kyung
    PLOS ONE, 2023, 18 (08):
  • [9] Anomaly Detection Through Graph Autoencoder-Based Learning of Screenshot Image Logs
    Ohkawa, Yuki
    Nakanishi, Takafumi
    18TH IEEE INTERNATIONAL CONFERENCE ON SEMANTIC COMPUTING, ICSC 2024, 2024, : 65 - 68
  • [10] Autoencoder-based feature construction for IoT attacks clustering
    Haseeb, Junaid
    Mansoori, Masood
    Hirose, Yuichi
    Al-Sahaf, Harith
    Welch, Ian
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2022, 127 : 487 - 502