Merging photoredox with metalloenzymatic catalysis for enantioselective decarboxylative C(sp3)-N3 and C(sp3)-SCN bond formation

被引:4
|
作者
Rui, Jinyan [1 ]
Mu, Xinpeng [1 ]
Soler, Jordi [2 ]
Paris, Jared C. [3 ]
Guo, Yisong [3 ]
Garcia-Borras, Marc [2 ]
Huang, Xiongyi [1 ]
机构
[1] Johns Hopkins Univ, Dept Chem, Baltimore, MD 21218 USA
[2] Univ Girona, Inst Quim Computac & Catalisi, Dept Quim, Girona, Spain
[3] Carnegie Mellon Univ, Dept Chem, Pittsburgh, PA 15213 USA
来源
NATURE CATALYSIS | 2024年 / 7卷 / 12期
基金
欧洲研究理事会; 美国国家卫生研究院;
关键词
DIRECTED EVOLUTION; HEME-PROTEINS; IRON; AZIDATION; ACTIVATION; STRATEGIES; REDUCTION; OXIDATION; ACIDS;
D O I
10.1038/s41929-024-01257-7
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The scope of nature's catalytic abilities has been expanded by recent advancements in biocatalysis to include synthetic transformations with no biological equivalent. However, these newly introduced catalytic functions represent only a small fraction of reactions utilized in synthetic catalysis. Here we present a biocatalytic platform that combines photoredox and metalloenzymatic catalysis for enantioselective radical transformations. Under green light irradiation, the eosin Y photocatalyst enables 4-hydroxyphenylpyruvate dioxygenases to catalyse enantioselective decarboxylative azidation and thiocyanation of N-hydroxyphthalimide esters. The final optimized variant obtained through directed evolution can afford diverse chiral organic azide and thiocyanate compounds with up to 77% yield, 385 total turnovers and 94% enantiomeric excess. Mechanistic studies show that the eosin Y catalyst mediates the generation of both C(sp3) radical and Fe(III)-N3/Fe(III)-NCS intermediate, leading to efficient enantioselective C-N3 and C-SCN bond formation in the enzyme active site. These findings establish an adaptable biocatalytic platform for introducing abiological metallophotoredox catalysis into biology.
引用
收藏
页码:1394 / 1403
页数:13
相关论文
共 50 条
  • [1] Decarboxylative sp3 C–N coupling via dual copper and photoredox catalysis
    Yufan Liang
    Xiaheng Zhang
    David W. C. MacMillan
    Nature, 2018, 559 : 83 - 88
  • [2] Photoredox/Cu-Catalyzed Decarboxylative C(sp3)-C(sp3) Coupling to Access C(sp3)-Rich gem-Diborylalkanes
    Huang, Mingming
    Sun, Huaxing
    Seufert, Florian
    Friedrich, Alexandra
    Marder, Todd B.
    Hu, Jiefeng
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (33)
  • [3] Catalytic alkylation of unactivated C(sp3)-H bonds for C(sp3)-C(sp3) bond formation
    Chen, Zhen
    Rong, Meng-Yu
    Nie, Jing
    Zhu, Xue-Feng
    Shi, Bing-Feng
    Ma, Jun-An
    CHEMICAL SOCIETY REVIEWS, 2019, 48 (18) : 4921 - 4942
  • [4] Ni-Electrocatalytic Enantioselective Doubly Decarboxylative C(sp3)-C(sp3) Cross Coupling
    Gao, Yang
    Zhang, Benxiang
    He, Jiayan
    Baran, Phil S.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2023, 145 (21) : 11518 - 11523
  • [5] Redox-Activated Amines in C(sp3)-C(sp) and C(sp3)-C(sp2) Bond Formation Enabled by Metal-Free Photoredox Catalysis
    Ociepa, Michal
    Turkowska, Joanna
    Gryko, Dorota
    ACS CATALYSIS, 2018, 8 (12): : 11362 - 11367
  • [6] Decarboxylative sp3 C-N coupling via dual copper/photoredox catalysis
    Liang, Yufan
    Zhang, Xiaheng
    MacMillan, David
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [7] Decarboxylative sp3 C-N coupling via dual copper and photoredox catalysis
    Liang, Yufan
    Zhang, Xiaheng
    MacMillan, David W. C.
    NATURE, 2018, 559 (7712) : 83 - +
  • [8] Enantioselective C(sp2)-C(sp3) Bond Construction by Ni Catalysis
    Chen, Li-Ming
    Reisman, Sarah E.
    ACCOUNTS OF CHEMICAL RESEARCH, 2024, 57 (05) : 751 - 762
  • [9] Photoredox Catalyzed C(sp3)-C(sp3) Coupling of α-Bromoesters and Triethylamine
    Guerra, Allie W.
    Pierce, Joshua G.
    JOURNAL OF ORGANIC CHEMISTRY, 2023, 89 (01): : 810 - 814
  • [10] Advances on Nickel-Catalyzed C(sp3)-C(sp3) Bond Formation
    Cheng Lei
    Zhou Qilin
    ACTA CHIMICA SINICA, 2020, 78 (10) : 1017 - 1029