Human Stress Detection in and Through Sleep Patterns Using Machine Learning Algorithms

被引:0
|
作者
Geetha R. [1 ]
Gunanandhini S. [1 ]
Srikanth G.U. [2 ]
Sujatha V. [3 ]
机构
[1] Department of Computer Science and Engineering, S.A. Engineering College, Chennai
[2] Department of Computer Science and Engineering, Panimalar Engineering College, Chennai
[3] Department of Master of Computer Applications, S.A. Engineering College, Chennai
关键词
Decision tree; Gradient boosting; Machine learning; Multi-layer perceptron (MLP); Random forest; Stress detection;
D O I
10.1007/s40031-024-01079-y
中图分类号
学科分类号
摘要
Stress has a remarkable impact on various cognitive functions, demanding timely and effective detection using strategies deployed across interdisciplinary domains. It influences decision-making, attention, learning, and problem-solving abilities. As a result, stress detection and modeling have become important areas of study in both psychology and computer science. This study links the fields of psychology and machine learning to deal with the urgent requirement of accurate stress detection methodologies and highlights sleep patterns as a key indicator for stress detection, discussing a novel approach to understand and determine stress levels. Psychologists use affective states to measure stress, which refers to a sense of feeling an underlying emotional state. However, most stress classification work has been limited to user-dependent models, which new users cannot use without additional training. This can be a significant time burden for new users trying to predict their affective states. Therefore, it is critical to address basic mental health issues in children and adults to prevent them from developing more complex problems on account of undergoing stress. The medical field processes vast amounts of medical data; the machine learning algorithms sift through patterns that might escape the human eye. The machine learning algorithms act as detectives, able to spot correlations and bring out a sense of complex information. The machine learning algorithms reveal fine correlations and patterns, aiding in more precise and prompt diagnoses particularly to focus fundamental mental health issues in individuals of all ages. This research work deploys an enhanced Multilayer Perceptron (MLP), exhibiting an extensive feature analysis for processing medical datasets, resulting in improved effectiveness in predicting stress levels. This helps us to diagnose issues more accurately and swiftly which improves the patient outcomes. The proposed and enhanced MLP model undergoes stringent evaluation and its performance metrics are measured as Accuracy 99%, Precision 98.6%, Recall 99%, and F1-Score 99.5% compared against existing competent machine learning algorithms that include Adaboost, Random Forest, Gradient Boosting, and Decision Tree for different stress levels undertaken. The results show that MLP provides best results of accuracy compared with existing machine learning techniques in identifying stress detection via sleep patterns. © The Institution of Engineers (India) 2024.
引用
收藏
页码:1691 / 1713
页数:22
相关论文
共 50 条
  • [1] AUTOMATIC CLASSIFICATION OF UNEQUAL LEXICAL STRESS PATTERNS USING MACHINE LEARNING ALGORITHMS
    Shahin, Mostafa Ali
    Ahmed, Beena
    Ballard, Kirrie J.
    2012 IEEE WORKSHOP ON SPOKEN LANGUAGE TECHNOLOGY (SLT 2012), 2012, : 388 - 391
  • [2] Wine Quality Detection through Machine Learning Algorithms
    Trivedi, Akanksha
    Sehrawat, Ruchi
    2018 INTERNATIONAL CONFERENCE ON RECENT INNOVATIONS IN ELECTRICAL, ELECTRONICS & COMMUNICATION ENGINEERING (ICRIEECE 2018), 2018, : 1756 - 1760
  • [3] Detection of Depression Using Machine Learning Algorithms
    Kumar, M. Ravi
    Pooja, Kadoori
    Udathu, Meghana
    Prasanna, J. Lakshmi
    Santhosh, Chella
    INTERNATIONAL JOURNAL OF ONLINE AND BIOMEDICAL ENGINEERING, 2022, 18 (04) : 155 - 163
  • [4] Fall Detection Using Machine Learning Algorithms
    Vallabh, Pranesh
    Malekian, Reza
    Ye, Ning
    Bogatinoska, Dijana Capeska
    2016 24TH INTERNATIONAL CONFERENCE ON SOFTWARE, TELECOMMUNICATIONS AND COMPUTER NETWORKS (SOFTCOM), 2016, : 51 - 59
  • [5] Ransomware detection using machine learning algorithms
    Bae, Seong Il
    Lee, Gyu Bin
    Im, Eul Gyu
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2020, 32 (18):
  • [6] Pothole Detection Using Machine Learning Algorithms
    Al Masud, A. K. M. Jobayer
    Sharin, Saraban Tasnim
    Shawon, Khandokar Farhan Tanvir
    Zaman, Zakia
    2021 15TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATION SYSTEMS (ICSPCS), 2021,
  • [7] Forecasting Mental Stress Using Machine Learning Algorithms
    Hossain, Elias
    Alazeb, Abdulwahab
    Almudawi, Naif
    Almakdi, Sultan
    Alshehri, Mohammed
    Faruque, M. Gazi Golam
    Rahman, Wahidur
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 72 (03): : 4945 - 4966
  • [8] Head Impact Detection Using Machine Learning Algorithms
    Al Bataineh, Mohammad
    Abu Abdoun, Dana I.
    Alnuaimi, Huda
    Al-Qudah, Zouhair
    Albataineh, Zaid
    Al Ahmad, Mahmoud
    IEEE ACCESS, 2024, 12 : 4938 - 4947
  • [9] Early detection of sepsis using machine learning algorithms
    El-Aziz, Rasha M. Abd
    Rayan, Alanazi
    ALEXANDRIA ENGINEERING JOURNAL, 2025, 111 : 47 - 56
  • [10] Detection of Stroke Disease using Machine Learning Algorithms
    Shoily, Tasfia Ismail
    Islam, Tajul
    Jannat, Sumaiya
    Tanna, Sharmin Akter
    Alif, Taslima Mostafa
    Ema, Romana Rahman
    2019 10TH INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION AND NETWORKING TECHNOLOGIES (ICCCNT), 2019,