Effect of Sc and Zr addition on mechanical properties of cellular aluminum foam

被引:0
|
作者
Huang, Li [1 ,2 ,3 ]
Liu, Shanguang [1 ,2 ,3 ]
Hao, Huilin [1 ,2 ,3 ]
Li, Shasha [1 ,2 ,3 ]
Du, Xuchu [1 ,2 ,3 ]
Lu, Zheng [1 ,2 ,3 ]
机构
[1] AECC Beijing Inst Aeronaut Mat, Beijing 100095, Peoples R China
[2] Beijing Engn Res Ctr Adv Aluminum Alloys & Applica, Beijing 100095, Peoples R China
[3] Innovat Ctr Adv Aluminum Alloy, Beijing 100095, Peoples R China
来源
关键词
cellular alluminum alloy foam; precipitate phase; aging-treatment; resistance; compressive strength; AL-ZR; PRECIPITATION EVOLUTION; TI ALLOYS; MINOR SC; SCANDIUM; MICROSTRUCTURE; REFINEMENT; RESISTANCE;
D O I
10.11868/j.issn.1001-4381.2022.000856
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Ca and TiH2 as the thickening agent and blowing agent, respectively, Al-0. 16Sc, Al0. 21Sc, and Al-0. 16Sc-0. 17Zr cellular foams with porosity of (72 +/- 0. 5)degrees o were successfully fabricated by the melt-foaming method. The microstructure and compressive strength of the foams with isochronal aging treatment were investigated. The results show that during isochronal aging between 200 degrees C and 600 degrees C, Al-0. 16Sc and Al-0. 21Sc foams achieve their peak yield strengths (about 21. 4 MPa and 26. 8 MPa, respectively) at 325 degrees C due to the precipitation strengthening of Al3Sc/Al-3(Sc1-xTix). Unlike the AlSc foam, the yield strength of the Al-0. 16Sc-0. 17Zr alloy foam reaches 23. 7 MPa at 325 degrees C and 24. 7 MPa at 400 degrees C, representing an increase of 100. 8 degrees o and 109 degrees o than those of the cast alloy, respectively. Zr addition not only significantly enhances the strength of the Al-Sc foams, but also effectively affects the coarsening of the Al3Sc/Al-3(Sc1-xTix) precipitate.
引用
收藏
页码:107 / 117
页数:11
相关论文
共 43 条
  • [1] PRECIPITATION HARDENING
    ARDELL, AJ
    [J]. METALLURGICAL TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1985, 16 (12): : 2131 - 2165
  • [2] Ashby M.F., 2000, METAL FOAMS A DESIGN
  • [3] On the mechanism of grain refinement in Al-Zr-Ti alloys
    Atamanenko, T. V.
    Eskin, D. G.
    Sluiter, M.
    Katgerman, L.
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2011, 509 (01) : 57 - 60
  • [4] Manufacture, characterisation and application of cellular metals and metal foams
    Banhart, J
    [J]. PROGRESS IN MATERIALS SCIENCE, 2001, 46 (06) : 559 - U3
  • [5] Coarsening resistance at 400 °C of precipitation-strengthened Al-Zr-Sc-Er alloys
    Booth-Morrison, Christopher
    Dunand, David C.
    Seidman, David N.
    [J]. ACTA MATERIALIA, 2011, 59 (18) : 7029 - 7042
  • [6] Complex precipitation pathways in multicomponent alloys
    Clouet, Emmanuel
    Lae, Ludovic
    Epicier, Thierry
    Lefebvre, Williams
    Nastar, Maylise
    Deschamps, Alexis
    [J]. NATURE MATERIALS, 2006, 5 (06) : 482 - 488
  • [7] Scientific principles of making an alloying addition of scandium to aluminium alloys
    Davydov, VG
    Rostova, TD
    Zakharov, VV
    Filatov, YA
    Yelagin, VI
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2000, 280 (01): : 30 - 36
  • [8] DIAO M X, 2022, Journal of Materials Engineering, P60
  • [9] DU G, 2010, Transactions of Nonferrous Metals Society of China, V6, P1083
  • [10] Pre-precipitation study in the 7012 Al-Zn-Mg-Cu alloy by electrical resistivity
    Ferragut, R
    Somoza, A
    Torriani, I
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2002, 334 (1-2): : 1 - 5