Toward intelligent wireless communications:Deep learning-based physical layer technologies

被引:0
|
作者
Siqi Liu
Tianyu Wang
Shaowei Wang
机构
[1] SchoolofElectronicScienceandEngineering,NanjingUniversity
关键词
D O I
暂无
中图分类号
TN929.5 [移动通信]; TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Advanced technologies are required in future mobile wireless networks to support services with highly diverse requirements in terms of high data rate and reliability, low latency, and massive access. Deep Learning(DL), one of the most exciting developments in machine learning and big data, has recently shown great potential in the study of wireless communications. In this article, we provide a literature review on the applications of DL in the physical layer. First, we analyze the limitations of existing signal processing techniques in terms of model accuracy, global optimality, and computational scalability. Next, we provide a brief review of classical DL frameworks. Subsequently, we discuss recent DL-based physical layer technologies, including both DL-based signal processing modules and end-to-end systems. Deep neural networks are used to replace a single or several conventional functional modules, whereas the objective of the latter is to replace the entire transceiver structure.Lastly, we discuss the open issues and research directions of the DL-based physical layer in terms of model complexity, data quality, data representation, and algorithm reliability.
引用
收藏
页码:589 / 597
页数:9
相关论文
共 50 条
  • [1] Toward intelligent wireless communications: Deep learning - based physical layer technologies
    Liu, Siqi
    Wang, Tianyu
    Wang, Shaowei
    DIGITAL COMMUNICATIONS AND NETWORKS, 2021, 7 (04) : 589 - 597
  • [2] DeepReceiver: A Deep Learning-Based Intelligent Receiver for Wireless Communications in the Physical Layer
    Zheng, Shilian
    Chen, Shichuan
    Yang, Xiaoniu
    IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2021, 7 (01) : 5 - 20
  • [3] Deep learning in wireless communications for physical layer
    Zhao, Junhui
    Liu, Congcong
    Liao, Jieyu
    Wang, Dongming
    PHYSICAL COMMUNICATION, 2024, 67
  • [4] Deep Reinforcement Learning-Based Intelligent Reflecting Surface for Secure Wireless Communications
    Yang, Helin
    Xiong, Zehui
    Zhao, Jun
    Niyato, Dusit
    Xiao, Liang
    Wu, Qingqing
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2021, 20 (01) : 375 - 388
  • [5] A survey of Machine Learning-based Physical-Layer Authentication in wireless communications
    Meng, Rui
    Xu, Bingxuan
    Xu, Xiaodong
    Sun, Mengying
    Wang, Bizhu
    Han, Shujun
    Lv, Suyu
    Zhang, Ping
    JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2025, 235
  • [6] Deep Learning-based Channel Prediction for Wireless Physical Layer Security
    Martins, Joao
    Gomes, Marco
    Silva, Vitor
    Dinis, Rui
    2024 IEEE INTERNATIONAL MEDITERRANEAN CONFERENCE ON COMMUNICATIONS AND NETWORKING, MEDITCOM 2024, 2024, : 114 - 118
  • [7] Physical-Layer Adversarial Robustness for Deep Learning-Based Semantic Communications
    Nan, Guoshun
    Li, Zhichun
    Zhai, Jinli
    Cui, Qimei
    Chen, Gong
    Du, Xin
    Zhang, Xuefei
    Tao, Xiaofeng
    Han, Zhu
    Quek, Tony Q. S.
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2023, 41 (08) : 2592 - 2608
  • [8] Learning-based Physical Layer Communications for Multiagent Collaboration
    Mostaani, Arsham
    Simeone, Osvaldo
    Chatzinotas, Symeon
    Ottersten, Bjorn
    2019 IEEE 30TH ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS (PIMRC), 2019, : 1144 - 1149
  • [9] DEEP LEARNING IN PHYSICAL LAYER COMMUNICATIONS
    Qin, Zhijin
    Ye, Hao
    Li, Geoffrey Ye
    Juang, Biing-Hwang Fred
    IEEE WIRELESS COMMUNICATIONS, 2019, 26 (02) : 93 - 99
  • [10] Machine Learning-based Physical Layer Authentication using Neighborhood Component Analysis in MIMO Wireless Communications
    Yoon, Jiseok
    Lee, Younggu
    Hwang, Euiseok
    2019 10TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGY CONVERGENCE (ICTC): ICT CONVERGENCE LEADING THE AUTONOMOUS FUTURE, 2019, : 63 - 65