On multicriteria online problems

被引:0
|
作者
Flammini, Michele [1 ]
Nicosia, Gaia [2 ]
机构
[1] Dipartimento di Matematica Pura ed Applicata, University of L’Aquila, Via Vetoio loc. Coppito, L’Aquila,I-67100, Italy
[2] Dipartimento di Informatica ed Automazione, University of Roma Tre, Via della Vasca Navale 79, Roma,I-00146, Italy
关键词
Computers;
D O I
10.1007/3-540-45253-2_18
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we consider multicriteria formulations of classical online problems where an algorithm must simultaneously perform well with respect to two different cost measures. The one of the possible optimal offline strategies according to a given selection function. We consider a parametric family of functions based on their monotonicity properties which covers all the possible selections. Then, we provide a universal multicriteria algorithm that can be applied to different online problems. For the multicriteria k-server formulation, for each function class, such an algorithm achieves competitive ratios that are only an O(logW) multiplicative factor away from the corresponding lower bounds that we determine for the class, where W is the maximum edge weight. We then show how to extend our results to other multicriteria online problems sharing similar properties. © Springer-Verlag Berlin Heidelberg 2000.
引用
收藏
页码:191 / 201
相关论文
共 50 条
  • [1] DUALITY THEOREMS FOR MULTICRITERIA PROBLEMS
    AZIMOV, AJ
    DOKLADY AKADEMII NAUK SSSR, 1985, 280 (01): : 11 - 15
  • [2] Algorithms for Multicriteria Location Problems
    Alzorba, Shaghaf
    Guenther, Christian
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2012), VOLS A AND B, 2012, 1479 : 2286 - 2289
  • [3] RELAXATION OF CONSTRAINTS IN MULTICRITERIA PROBLEMS
    BELOV, EG
    CHENTSOV, AG
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII MATEMATIKA, 1991, (07): : 3 - 8
  • [4] Multicriteria planar location problems
    Univ of Kaiserslautern, Kaiserslautern, Germany
    Eur J Oper Res, 1 (66-86):
  • [5] Multicriteria optimum path problems
    Ivanchev, Dimiter
    Kydros, Dimitris
    Yugoslav Journal of Operations Research, 1995, 5 (01) : 79 - 93
  • [6] Problems in scalarizing multicriteria approaches
    Weidner, P
    MULTIPLE CRITERIA DECISION MAKING IN THE NEW MILLENNIUM, 2001, 507 : 199 - 209
  • [7] Multicriteria scheduling problems: A survey
    T'kindt, V
    Billaut, JC
    RAIRO-RECHERCHE OPERATIONNELLE-OPERATIONS RESEARCH, 2001, 35 (02): : 143 - 163
  • [8] Multicriteria planar location problems
    Hamacher, HW
    Nickel, S
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1996, 94 (01) : 66 - 86
  • [9] MULTICRITERIA PROBLEMS WITH OBJECTIVE MODELS
    LARICHEV, OI
    LECTURE NOTES IN ECONOMICS AND MATHEMATICAL SYSTEMS, 1991, 351 : 15 - 20
  • [10] On the Reducibility of Multicriteria Scheduling Problems to Bicriteria Scheduling Problems
    Akande, Saheed
    Oluleye, Ayodeji. E.
    Oyetunji, Elkanah O.
    2015 INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND OPERATIONS MANAGEMENT (IEOM), 2015,