Oxygen mass transfer characteristics in a membrane-aerated biofilm reactor

被引:0
|
作者
Casey, E.
Glennon, B.
Hamer, G.
机构
来源
关键词
Bioreactors - Biological membranes - Oxygen - Mass transfer - Water aeration - Oxidation - Wastewater treatment - Mathematical models - Biomass - Cell immobilization - Microorganisms;
D O I
暂无
中图分类号
学科分类号
摘要
Immobilization of pollutant-degrading microorganisms on oxygen-permeable membranes provides a novel method of increasing the oxidation capacity of wastewater treatment bioreactors. Oxygen mass transfer characteristics during continuous-flow steady-state experiments were investigated for biofilms supported on tubular silicone membranes. An analysis of oxygen mass transport and reaction using an established mathematical model for dual-substrate limitation supported the experimental results reported. In thick biofilms, an active layer of biomass where both carbon substrate and oxygen are available was found to exist. The location of this active layer varies depending on the ratio of the carbon substrate loading rate to the intramembrane oxygen pressure. The thickness of a carbon- substrate-starved layer was found to greatly influence the mass transport of oxygen into the active biomass layer, which was located close to, but not in contact with, the biofilm-liquid interface. The experimental results demonstrated that oxygen uptake rates as high as 20 g m-2 d-1 bar-1 can be achieved, and the model predicts that, for an optimized biofilm thickness, oxygen uptake rates of more than 30 g m-2 d-1 bar-1 should be possible. This would allow membrane-aerated biofilm reactors to operate with much greater thicknesses of active biomass than can conventional biofilm reactors as well as offering the further advantage of close to 100% oxygen conversion efficiencies for the treatment of high-strength wastewaters. In the case of dual- substrate-limited biofilms, the potential to increase the oxygen flux does not necessarily increase the substrate (acetate) removal rate.
引用
收藏
页码:183 / 192
相关论文
共 50 条
  • [1] Oxygen mass transfer characteristics in a membrane-aerated biofilm reactor
    Casey, E
    Glennon, B
    Hamer, G
    BIOTECHNOLOGY AND BIOENGINEERING, 1999, 62 (02) : 183 - 192
  • [2] Characteristics of a methanotrophic culture in a membrane-aerated biofilm reactor
    Rishell, S
    Casey, E
    Glennon, B
    Hamer, G
    BIOTECHNOLOGY PROGRESS, 2004, 20 (04) : 1082 - 1090
  • [3] Membrane-aerated biofilm reactor degrades PCE
    Dept. of Chemical Engineering and Chemical Technology, Imperial College London, Prince Consort Rd., London SW7 2AZ, United Kingdom
    Ind Bioprocess, 2006, 10 (8-9):
  • [4] Biodegradation of acetonitrile by adapted biofilm in a membrane-aerated biofilm reactor
    Tinggang Li
    Renbi Bai
    Dieudonné-Guy Ohandja
    Junxin Liu
    Biodegradation, 2009, 20 : 569 - 580
  • [5] Biodegradation of acetonitrile by adapted biofilm in a membrane-aerated biofilm reactor
    Li, Tinggang
    Bai, Renbi
    Ohandja, Dieudonne-Guy
    Liu, Junxin
    BIODEGRADATION, 2009, 20 (04) : 569 - 580
  • [6] Biofilm development in a membrane-aerated biofilm reactor: effect of intra-membrane oxygen pressure on performance
    Casey, E
    Glennon, B
    Hamer, G
    BIOPROCESS ENGINEERING, 2000, 23 (05) : 457 - 465
  • [8] Biofilm development in a membrane-aerated biofilm reactor: effect of intra-membrane oxygen pressure on performance
    E. Casey
    B. Glennon
    G. Hamer
    Bioprocess Engineering, 2000, 23 : 457 - 465
  • [9] Membrane-aerated Biofilm reactor for the treatment of acetonitrile wastewater
    Li, Tinggang
    Liu, Junxin
    Bai, Renbi
    Wong, F. S.
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2008, 42 (06) : 2099 - 2104
  • [10] Organic Matter Removal in a Membrane-Aerated Biofilm Reactor
    da Silva, Tatiana Santos
    Matsumoto, Tsunao
    dos Anjos, Mariane Luz
    Albertin, Liliane Lazzari
    JOURNAL OF ENVIRONMENTAL ENGINEERING, 2018, 144 (08)