Smoothing of digital images using the concept of diffusion process

被引:0
|
作者
Indian Statistical Inst, Calcutta, India [1 ]
机构
来源
Pattern Recognit | / 3卷 / 497-510期
关键词
Adaptive algorithms - Approximation theory - Digital signal processing - Image quality - Iterative methods - Spurious signal noise;
D O I
暂无
中图分类号
学科分类号
摘要
An adaptive smoothing algorithm has been described which is capable of performing various tasks, such as removing salt and pepper noise, preserving roof edges, stretching (enhancing) step edges and reducing variations in low intensity varied regions. While iteration advances, it approximates both isotropic and anisotropic heat diffusion processes in performing these tasks. A region topography index has been defined for guiding the algorithm under different situations. Further, an image quality index is proposed which provides a criterion for automatic termination of the algorithm. This criterion can also be used with other iterative smoothing algorithms. The superiority of the method over some other similar techniques has been established for both synthetic and real images.
引用
收藏
相关论文
共 50 条
  • [1] Smoothing of digital images using the concept of diffusion process
    Biswas, S
    Pal, NR
    Pal, SK
    PATTERN RECOGNITION, 1996, 29 (03) : 497 - 510
  • [2] Smoothing of digital images using the concept of diffusion process (vol 29, pg 497, 1996)
    Biswas, S
    Pal, NR
    Pal, SK
    PATTERN RECOGNITION, 1996, 29 (07) : R1 - R1
  • [3] Reduction of noise in diffusion tensor images using anisotropic smoothing
    Ding, ZH
    Gore, JC
    Anderson, AW
    MAGNETIC RESONANCE IN MEDICINE, 2005, 53 (02) : 485 - 490
  • [4] Smoothing tensor-valued images using anisotropic geodesic diffusion
    Zhang, Fan
    Hancock, Edwin R.
    STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, PROCEEDINGS, 2006, 4109 : 83 - 91
  • [5] Anisotropic diffusion for smoothing scintigraphic images.
    Bobbert, C
    Rascher-Friesenhausen, R
    Richter, E
    Baehre, M
    JOURNAL OF NUCLEAR MEDICINE, 2001, 42 (05) : 202P - 202P
  • [6] Feature-Preserving Smoothing of Diffusion Weighted Images Using Nonstationarity Adaptive Filtering
    Zhang, Yan-Li
    Liu, Wan-Yu
    Magnin, Isabelle E.
    Zhu, Yue-Min
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2013, 60 (06) : 1693 - 1701
  • [7] Steganography using stochastic diffusion for the covert communication of digital images
    Blackledge, Jonathan M.
    Al-Rawi, AbdulRahman I.
    IAENG International Journal of Applied Mathematics, 2011, 41 (04) : 270 - 298
  • [8] Adaptive smoothing of digital images: the R package adimpro
    Polzehl, Joerg
    Tabelow, Karsten
    JOURNAL OF STATISTICAL SOFTWARE, 2007, 19 (01):
  • [9] Unified framework for anisotropic interpolation and smoothing of diffusion tensor images
    Mishra, Arabinda
    Lu, Yonggang
    Meng, Jingjing
    Anderson, Adam W.
    Ding, Zhaohua
    NEUROIMAGE, 2006, 31 (04) : 1525 - 1535
  • [10] Data driven confidence intervals for diffusion process using double smoothing empirical likelihood
    Yang, Qi
    Song, Yuping
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 348 : 282 - 297