The Q method for the second-order cone programming

被引:0
|
作者
Alizadeh, F. [1 ]
Xia, Yu [2 ]
机构
[1] RUTCOR, Rutgers University, Piscatawy, NJ 08554-8003, United States
[2] Graduate School of Management, Rutgers University, Newark, NJ, United States
关键词
D O I
暂无
中图分类号
学科分类号
摘要
9
引用
收藏
页码:208 / 213
相关论文
共 50 条
  • [1] The Q method for second order cone programming
    Xia, Yu
    Alizadeh, Farid
    COMPUTERS & OPERATIONS RESEARCH, 2008, 35 (05) : 1510 - 1538
  • [2] Second-order cone programming
    F. Alizadeh
    D. Goldfarb
    Mathematical Programming, 2003, 95 : 3 - 51
  • [3] Second-order cone programming
    Alizadeh, F
    Goldfarb, D
    MATHEMATICAL PROGRAMMING, 2003, 95 (01) : 3 - 51
  • [4] A homotopy method for nonlinear second-order cone programming
    Li Yang
    Bo Yu
    YanXi Li
    Numerical Algorithms, 2015, 68 : 355 - 365
  • [5] A homotopy method for nonlinear second-order cone programming
    Yang, Li
    Yu, Bo
    Li, YanXi
    NUMERICAL ALGORITHMS, 2015, 68 (02) : 355 - 365
  • [6] A Combined Newton Method for Second-Order Cone Programming
    Chi, Xiaoni
    Peng, Jin
    SIXTH INTERNATIONAL SYMPOSIUM ON NEURAL NETWORKS (ISNN 2009), 2009, 56 : 605 - 612
  • [7] A Variant of the Simplex Method for Second-Order Cone Programming
    Zhadan, Vitaly
    MATHEMATICAL OPTIMIZATION THEORY AND OPERATIONS RESEARCH, 2019, 11548 : 115 - 129
  • [8] Second-order variational analysis in second-order cone programming
    Nguyen T. V. Hang
    Boris S. Mordukhovich
    M. Ebrahim Sarabi
    Mathematical Programming, 2020, 180 : 75 - 116
  • [9] Second-order variational analysis in second-order cone programming
    Hang, Nguyen T. V.
    Mordukhovich, Boris S.
    Sarabi, M. Ebrahim
    MATHEMATICAL PROGRAMMING, 2020, 180 (1-2) : 75 - 116
  • [10] Applications of second-order cone programming
    Lobo, MS
    Vandenberghe, L
    Boyd, S
    Lebret, H
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1998, 284 (1-3) : 193 - 228