Bi-Hamiltonian structures of the coupled AKNS hierarchy and the coupled Yajima-Oikawa hierarchy

被引:0
|
作者
Liu, Q. P.
机构
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] Bi-Hamiltonian structures of the coupled AKNS hierarchy and the coupled Yajima-Oikawa hierarchy
    Liu, QP
    JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (05) : 2307 - 2314
  • [2] Bi-Hamiltonian Structure of Multi-Component Yajima-Oikawa Hierarchy
    Li, Hongmin
    Li, Yuqi
    Chen, Yong
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2015, 70 (11): : 929 - 934
  • [3] A generalized AKNS hierarchy and its bi-Hamiltonian structures
    Xia, TC
    You, FC
    Chen, DY
    CHAOS SOLITONS & FRACTALS, 2005, 23 (05) : 1911 - 1919
  • [4] A generalized AKNS hierarchy, bi-Hamiltonian structure, and Darboux transformation
    Zhaqilao
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (06) : 2319 - 2332
  • [5] An integrable semi-discretization of the coupled Yajima-Oikawa system
    Chen, Junchao
    Chen, Yong
    Feng, Bao-Feng
    Maruno, Ken-ichi
    Ohta, Yasuhiro
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (16)
  • [6] Hierarchy of coupled Korteweg-de Vries equations and their generalized bi-Hamiltonian structures
    Li, Chunxia
    Zhengzhou Daxue Xuebao/Journal of Zhengzhou University, 2002, 34 (02):
  • [7] CONSTRAINED KP HIERARCHY AND BI-HAMILTONIAN STRUCTURES
    OEVEL, W
    STRAMPP, W
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 157 (01) : 51 - 81
  • [8] An integrable generalization of the super AKNS hierarchy and its bi-Hamiltonian formulation
    Yu, Jing
    Ma, Wen-Xiu
    Han, Jingwei
    Chen, Shouting
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 43 : 151 - 157
  • [9] Multi-Component Generalizations of Two Hierarchies Related to the Yajima-Oikawa Hierarchy
    Li, Nianhua
    Li, Hongmin
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2017, 72 (07): : 595 - 600
  • [10] The coupled modified Yajima-Oikawa system: Model derivation and soliton solutions
    Chen, Junchao
    Feng, Bao-Feng
    Maruno, Ken-ichi
    PHYSICA D-NONLINEAR PHENOMENA, 2023, 448