Nonlinear reaction diffusion schemes in continuous kinetics

被引:0
|
作者
Giona, Massimiliano [1 ]
Giustiniani, Manuela [1 ]
Adrover, Alessandra [1 ]
Patierno, Oreste [1 ]
机构
[1] Universita di Roma 'La Sapienza', Roma, Italy
关键词
Catalysts - Chaos theory - Dynamics - Mathematical models - Mixtures - Nonlinear control systems - Reaction kinetics - Stability - Stochastic control systems;
D O I
暂无
中图分类号
学科分类号
摘要
We analyze reaction schemes in continuous mixtures in the presence of space gradients from the standpoint of the Banach theorem of contractive mappings. The particular case of reaction-diffusion kinetics in a catalyst pellet (slab-model) is considered by developing in detail the analysis for monotonically decaying kinetics and for generic (mass-conserving) reaction schemes. The latter case is addressed by making use of the Frechet decomposition theorem of continuous functionals. Kinetic schemes for which the conservation principle in continuous mixtures cannot be expressed in a straightforward manner are also discussed, focusing attention on the intrinsic dynamic complexity (instabilities, chaos, stochastic description) induced by continuous parametrization.
引用
收藏
页码:173 / 196
相关论文
共 50 条
  • [1] NONLINEAR REACTION-DIFFUSION SCHEMES IN CONTINUOUS KINETICS
    GIONA, M
    GIUSTINIANI, M
    ADROVER, A
    PATIERNO, O
    CHEMICAL ENGINEERING COMMUNICATIONS, 1994, 128 : 173 - 196
  • [2] Nonisothermal diffusion-reaction with nonlinear Kramers kinetics
    Ortiz de Zarate, Jose M.
    Bedeaux, Dick
    Pagonabarraga, Ignacio
    Sengers, Jan V.
    Kjelstrup, Signe
    COMPTES RENDUS MECANIQUE, 2011, 339 (05): : 287 - 291
  • [3] ADER Schemes for Nonlinear Systems of Stiff Advection–Diffusion–Reaction Equations
    Arturo Hidalgo
    Michael Dumbser
    Journal of Scientific Computing, 2011, 48 : 173 - 189
  • [4] ADER finite volume schemes for nonlinear reaction-diffusion equations
    Toro, Eleuterio F.
    Hidalgo, Arturo
    APPLIED NUMERICAL MATHEMATICS, 2009, 59 (01) : 73 - 100
  • [5] On the Stability of Finite Difference Schemes for Nonlinear Reaction-Diffusion Systems
    Muyinda, Nathan
    De Baets, Bernard
    Rao, Shodhan
    INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2017), 2018, 1978
  • [6] NSFD schemes for a class of nonlinear generalised advection–diffusion–reaction equation
    SHEERIN KAYENAT
    AMIT K VERMA
    Pramana, 2022, 96
  • [7] Stable rotational symmetric schemes for nonlinear reaction-diffusion equations
    Lee, Philku
    Popescu, George, V
    Kim, Seongjai
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2022, 109 : 191 - 203
  • [8] ADER Schemes for Nonlinear Systems of Stiff Advection-Diffusion-Reaction Equations
    Hidalgo, Arturo
    Dumbser, Michael
    JOURNAL OF SCIENTIFIC COMPUTING, 2011, 48 (1-3) : 173 - 189
  • [9] CONVERGENCE OF FINITE DIFFERENCE SCHEMES FOR NONLINEAR COMPLEX REACTION-DIFFUSION PROCESSES
    Araujo, Aderito
    Barbeiro, Silvia
    Serranho, Pedro
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (01) : 228 - 250
  • [10] Stability of finite difference schemes for nonlinear complex reaction-diffusion processes
    Araujo, Aderito
    Barbeiro, Slvia
    Serranho, Pedro
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2015, 35 (03) : 1381 - 1401