Two new techniques for aircraft parameter estimation using neural networks

被引:0
|
作者
Indian Inst of Technology, Kanpur, India [1 ]
机构
来源
Aeronaut J | / 1011卷 / 25-30期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] Two new techniques for aircraft parameter estimation using neural networks
    Raisinghani, SC
    Ghosh, AK
    Kalra, PK
    AERONAUTICAL JOURNAL, 1998, 102 (1011): : 25 - 30
  • [2] Parameter estimation of an aeroelastic aircraft using neural networks
    S. C. Raisinghani
    A. K. Ghosh
    Sadhana, 2000, 25 : 181 - 191
  • [3] Parameter estimation of an aeroelastic aircraft using neural networks
    Raisinghani, SC
    Ghosh, AK
    SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2000, 25 (2): : 181 - 191
  • [4] Aircraft parameter estimation using neural network
    Rajesh, A.K.
    Das, S.
    Sinha, M.
    Journal of the Institution of Engineers (India): Aerospace Engineering Journal, 2010, 91 (MAY): : 3 - 9
  • [5] Parameter estimation from flight data of an unstable aircraft using neural networks
    Ghosh, A.K. (akg@iitk.ac.in), 1600, American Inst. Aeronautics and Astronautics Inc. (39):
  • [6] Aircraft Parameter Estimation using Feedforward Neural Networks with Lyapunov Stability Analysis
    George, Sara Mohan
    Selvi, S. Sethu
    Raol, J. R.
    DEFENCE SCIENCE JOURNAL, 2022, 72 (05) : 655 - 664
  • [7] Parameter estimation from flight data of an unstable aircraft using neural networks
    Ghosh, AK
    Raisinghani, SC
    JOURNAL OF AIRCRAFT, 2002, 39 (05): : 892 - 894
  • [8] Aircraft neural modeling and parameter estimation using neural partial differentiation
    Mohamed, Majeed
    Dongare, Vikalp
    AIRCRAFT ENGINEERING AND AEROSPACE TECHNOLOGY, 2018, 90 (05): : 764 - 778
  • [9] Inverse problem of aircraft structural parameter estimation: application of neural networks
    Trivailo, P. M.
    Dulikravich, G. S.
    Sgarioto, D.
    Gilbert, T.
    INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2006, 14 (04) : 351 - 363
  • [10] Parameter estimation using compensatory neural networks
    M. Sinha
    P. K. Kalra
    K. Kumar
    Sadhana, 2000, 25 : 193 - 203